Get the data type of column in Pandas - Python
Let’s see how to get data types of columns in the pandas dataframe. First, Let’s create a pandas dataframe.
Example:
# importing pandas library
import pandas as pd
# List of Tuples
employees = [
('Stuti', 28, 'Varanasi', 20000),
('Saumya', 32, 'Delhi', 25000),
('Aaditya', 25, 'Mumbai', 40000),
('Saumya', 32, 'Delhi', 35000),
('Saumya', 32, 'Delhi', 30000),
('Saumya', 32, 'Mumbai', 20000),
('Aaditya', 40, 'Dehradun', 24000),
('Seema', 32, 'Delhi', 70000)
]
# Create a DataFrame
df = pd.DataFrame(employees,
columns = ['Name', 'Age',
'City', 'Salary'])
# show the dataframe
df
Output:

Method 1: Using Dataframe.dtypes attribute.
This attribute returns a Series with the data type of each column.
Syntax: DataFrame.dtypes.
Parameter: None.
Returns: dtype of each column.
Example 1: Get data types of all columns of a Dataframe.
# importing pandas library
import pandas as pd
# List of Tuples
employees = [
('Stuti', 28, 'Varanasi', 20000),
('Saumya', 32, 'Delhi', 25000),
('Aaditya', 25, 'Mumbai', 40000),
('Saumya', 32, 'Delhi', 35000),
('Saumya', 32, 'Delhi', 30000),
('Saumya', 32, 'Mumbai', 20000),
('Aaditya', 40, 'Dehradun', 24000),
('Seema', 32, 'Delhi', 70000)
]
# Create a DataFrame
df = pd.DataFrame(employees,
columns = ['Name', 'Age',
'City', 'Salary'])
# Use Dataframe.dtypes to
# give the series of
# data types as result
datatypes = df.dtypes
# Print the data types
# of each column
datatypes
Output:
Example 2: Get the data type of single column in a Dataframe.
#importing pandas library
import pandas as pd
# List of Tuples
employees = [('Stuti', 28, 'Varanasi', 20000),
('Saumya', 32, 'Delhi', 25000),
('Aaditya', 25, 'Mumbai', 40000),
('Saumya', 32, 'Delhi', 35000),
('Saumya', 32, 'Delhi', 30000),
('Saumya', 32, 'Mumbai', 20000),
('Aaditya', 40, 'Dehradun', 24000),
('Seema', 32, 'Delhi', 70000)
]
# Create a DataFrame
df = pd.DataFrame(employees,
columns = ['Name', 'Age',
'City', 'Salary'])
# Use Dataframe.dtypes to give
# data type of 'Salary' as result
datatypes = df.dtypes['Salary']
# Print the data types
# of single column
datatypes
Output:
Method 2: Using Dataframe.info() method.
This method is used to get a concise summary of the dataframe like:
- Name of columns
- Data type of columns
- Rows in Dataframe
- non-null entries in each column
- It will also print column count, names and data types.
Syntax: DataFrame.info(verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None)
Return: None and prints a summary of a DataFrame.
Example: Get data types of all columns of a Dataframe.
# importing pandas library
import pandas as pd
# List of Tuples
employees = [('Stuti', 28, 'Varanasi', 20000),
('Saumya', 32, 'Delhi', 25000),
('Aaditya', 25, 'Mumbai', 40000),
('Saumya', 32, 'Delhi', 35000),
('Saumya', 32, 'Delhi', 30000),
('Saumya', 32, 'Mumbai', 20000),
('Aaditya', 40, 'Dehradun', 24000),
('Seema', 32, 'Delhi', 70000)
]
# Create a DataFrame
df = pd.DataFrame(employees,
columns = ['Name', 'Age',
'City', 'Salary'])
# Print complete details
# about the data frame
df.info()
Output: