How to determine Period Range with Frequency in Pandas?
Last Updated :
25 May, 2021
Improve
In pandas, we can determine Period Range with Frequency with the help of period_range(). pandas.period_range() is one of the general functions in Pandas which is used to return a fixed frequency PeriodIndex, with day (calendar) as the default frequency.
Syntax: pandas.to_numeric(arg, errors=’raise’, downcast=None)
Parameters:
start : Left bound for generating periods
end : Right bound for generating periods
periods : Number of periods to generate
freq : Frequency alias
name : Name of the resulting PeriodIndexReturns: PeriodIndex
Example 1:
import pandas as pd
# initialize country
country = ["India", "Australia", "Pak", "Sri Lanka",
"England", "Bangladesh"]
# perform period_range() function
match_date = pd.period_range('8/1/2020', '8/6/2020', freq='D')
# generates dataframes
df = pd.DataFrame(country, index=match_date, columns=['Country'])
df
Output:

Example
import pandas as pd
# initialize country
Course = ["DSA", "OOPS", "DBMS", "Computer Network",
"System design", ]
# perform period_range() function
webinar_month = pd.period_range('8/1/2020', '12/1/2020', freq='M')
# generates dataframes
df = pd.DataFrame(Course, index=webinar_month, columns=['Course'])
df
Output:

Example 3:
import pandas as pd
# initialize gold price
gold_price = ["32k", "34k", "37k", "33k", "38k", "39k", "35k",
"32k", "42k", "52k", "62k", "52k", "38k", "39k",
"35k", "33k"]
# perform period_range() function
price_month = pd.period_range(start=pd.Period('2019Q1', freq='Q'),
end=pd.Period('2020Q2', freq='Q'),
freq='M')
# generates dataframes
df = pd.DataFrame(gold_price, index=price_month, columns=['Price'])
df
Output:
