Open In App

Matplotlib.axes.Axes.get_data_ratio() in Python

Last Updated : 30 Apr, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.get_data_ratio() Function

The Axes.get_data_ratio() function in axes module of matplotlib library is used to get the aspect ratio of the raw data.
Syntax: Axes.get_data_ratio(self) Parameters: This method does not accepts any parameter. Returns: This method return the aspect ratio of the raw data.
Below examples illustrate the matplotlib.axes.Axes.get_data_ratio() function in matplotlib.axes: Example 1: Python3
# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
 
fig, ax1 = plt.subplots()
 
x = np.random.randn(20, 50)
x[12, :] = 0.
x[:, 22] = 0.

ax1.spy(x)
ax1.set_title("Value Return by get_data_ratio : "
              +str(ax1.get_data_ratio())+"\n")

fig.suptitle('matplotlib.axes.Axes.get_data_ratio() \
Example')

plt.show()
Output: Example 2: Python3
# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
 
fig, [(ax1, ax2), (ax3, ax4)] = plt.subplots(2, 2)
 
x = np.random.randn(20, 50)
x[5, :] = 0.
x[:, 12] = 0.
 
ax1.spy(x, markersize = 4)
ax2.spy(x, precision = 0.2, markersize = 4)
 
ax3.spy(x)
ax4.spy(x, precision = 0.4)

ax1.set_title("Value Return by get_data_ratio : "
              +str(ax1.get_data_ratio())+"\n")


ax2.set_title("Value Return by get_data_ratio : "
              +str(ax2.get_data_ratio())+"\n")

ax3.set_title("Value Return by get_data_ratio : "
              +str(ax3.get_data_ratio())+"\n")

ax4.set_title("Value Return by get_data_ratio : "
              +str(ax4.get_data_ratio())+"\n")

fig.suptitle('matplotlib.axes.Axes.get_data_ratio\
 Example')

plt.show()
Output:

Next Article

Similar Reads