Matplotlib.axes.Axes.has_data() in Python
Last Updated :
30 Apr, 2020
Improve
Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
The Axes.has_data() function in axes module of matplotlib library is used to check if any artists have been added to axes.
Python3
Output:
Python3
Output:
matplotlib.axes.Axes.has_data() Function
Syntax: Axes.has_data(self) Parameters: This method does not accepts any parameter. Returns: This method return True if any artists have been added to axes.Below examples illustrate the matplotlib.axes.Axes.has_data() function in matplotlib.axes: Example 1:
# ImpleIn Reviewtation of matplotlib function
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots( )
ax1.set_xscale("log")
ax1.set_yscale("log")
ax1.set_adjustable("datalim")
ax1.plot([1, 3, 34, 4, 46, 3, 7, 45, 10],
[1, 9, 27, 8, 29, 84, 78, 19, 48],
"o-", color ="green")
ax1.set_xlim(1e-1, 1e2)
ax1.set_ylim(1, 1e2)
w = ax1.has_data()
print("Value Return by has_data() :", w)
fig.suptitle('matplotlib.axes.Axes.has_data()\
function Example\n\n', fontweight ="bold")
fig.canvas.draw()
plt.show()

Value Return by has_data() : TrueExample 2:
# ImpleIn Reviewtation of matplotlib function
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np
n_angles = 36
n_radii = 10
min_radius = 2
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles,
endpoint = False)
angles = np.repeat(angles[..., np.newaxis],
n_radii, axis = 1)
angles[:, 1::2] += 2 * np.pi / n_angles
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
triang = tri.Triangulation(x, y)
triang.set_mask(np.hypot(x[triang.triangles].mean(axis = 1),
y[triang.triangles].mean(axis = 1))
< min_radius)
fig, ax = plt.subplots()
ax.triplot(triang, 'bo-', lw = 1, color = "green")
w = ax.has_data()
print("Value Return by has_data() :", w)
fig.suptitle('matplotlib.axes.Axes.has_data() function\
Example\n\n', fontweight ="bold")
fig.canvas.draw()
plt.show()

Value Return by has_data() : True