Matplotlib.axis.Tick.get_clip_on() in Python
Last Updated :
01 May, 2022
Improve
Matplotlib is a library in Python and it is a numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.
matplotlib.axis.Tick.get_clip_on() Function
The Tick.get_clip_on() function in axis module of matplotlib library is used to get whether the artist uses clipping.
Syntax: Tick.get_clip_on(self)
Parameters: This method does not accepts any parameter.
Return value: This method return whether the artist uses clipping.
Below examples illustrate the matplotlib.axis.Tick.get_clip_on() function in matplotlib.axis:
Example 1:
# Implementation of matplotlib function
from matplotlib.axis import Tick
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Ellipse
delta = 10.0
angles = np.arange(0, 360 + delta, delta)
ells = [Ellipse((2, 2), 5, 2, a) for a in angles]
fig, ax = plt.subplots()
for e in ells:
e.set_alpha(0.1)
ax.add_artist(e)
ax.set_xlim(-1, 5)
ax.set_ylim(-1, 5)
print("Value Return by get_clip_on() : ",
Tick.get_clip_on(ax))
fig.suptitle("""matplotlib.axis.Tick.get_clip_on()
function Example\n""", fontweight="bold")
plt.show()
Output:
Value Return by get_clip_on() : True

Example 2:
# Implementation of matplotlib function
from matplotlib.axis import Tick
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.transforms as mtransforms
y0 = -0.8
arrow_style = "simple, head_length = 15, \
head_width = 30, tail_width = 10"
rect_style = "simple, tail_width = 25"
line_style = "simple, tail_width = 1"
fig, ax = plt.subplots()
trans = mtransforms.blended_transform_factory(ax.transAxes,
ax.transData)
x_tail = 0.05
x_head = 0.95
arrow1 = mpatches.FancyArrowPatch((x_tail, y0),
(x_head, y0),
arrowstyle=arrow_style,
transform=trans)
Tick.set_clip_on(arrow1, False)
ax.add_patch(arrow1)
ax.set_xlim(0, 10)
ax.set_ylim(0, 10)
print("Value Return by get_clip_on() : ",
Tick.get_clip_on(arrow1))
fig.suptitle("""matplotlib.axis.Tick.get_clip_on()
function Example\n""", fontweight="bold")
plt.show()
Output:
Value Return by get_clip_on() : False
