matplotlib.pyplot.axhline() in Python
Last Updated :
12 Apr, 2020
Improve
Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.
The axhline() function in pyplot module of matplotlib library is used to add a horizontal line across the axis.
Python3 1==
Output:
Example #2:
Python3 1==
Output:
matplotlib.pyplot.axhline() Function
Syntax: matplotlib.pyplot.axhline(y=0, xmin=0, xmax=1, **kwargs) Parameters: This method accept the following parameters that are described below:Below examples illustrate the matplotlib.pyplot.axhline() function in matplotlib.pyplot: Example #1:Returns: This returns the following:
- y: This parameter is an optional and it is position in data coordinates of the horizontal line.
- xmin: This parameter is a scalar and optional. Its default value is 0.
- xmax: This parameter is a scalar and optional. Its default value is 1.
line : This returns the line created by this function.
# Implementation of matplotlib.pyplot.annotate() function
import numpy as np
import matplotlib.pyplot as plt
t = np.linspace(-10, 10, 100)
sig = 1 / t
plt.axhline(y = 0, color ="green", linestyle ="--")
plt.axhline(y = 0.5, color ="green", linestyle =":")
plt.axhline(y = 1.0, color ="green", linestyle ="--")
plt.axvline(color ="black")
plt.plot(t, sig, linewidth = 2,
label = r"$\sigma(t) = \frac{1}{x}$")
plt.xlim(-10, 10)
plt.xlabel("t")
plt.title("Graph of 1 / x")
plt.legend(fontsize = 14)
plt.show()

# Implementation of matplotlib.pyplot.annotate()
# function
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 13, 100)
plt.rcParams['lines.linewidth'] = 2
plt.figure()
plt.plot(x, np.sin(x), label ='Line1',
color ='green', linestyle ="--")
plt.plot(x, np.sin(x + 0.5), label ='Line2',
color ='black', linestyle =":")
plt.axhline(0, label ='Line3', color ='black')
plt.title('Axhline() Example')
l = plt.legend(loc ='upper right')
# legend between blue and orange
# line
l.set_zorder(2.5)
plt.show()
