Python | Pandas dataframe.set_value()
Last Updated :
24 Nov, 2018
Improve
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
Python3 1==
Lets use the
Python3 1==
Output :
Example #2: Use
Python3 1==
Lets use the
Python3 1==
Output :
Notice, for the non-existent row and column in the dataframe, a new row and column has been inserted.
dataframe.set_value()
function put a single value at passed column and index. It takes the axis labels as input and a scalar value to be placed at the specified index in the dataframe. Alternative to this function is .at[]
or .iat[]
.
Syntax:DataFrame.set_value(index, col, value, takeable=False) Parameters : index : row label col : column label value : scalar value takeable : interpret the index/col as indexers, default False Return : frame : DataFrame If label pair is contained, will be reference to calling DataFrame, otherwise a new objectExample #1: Use
set_value()
function to set the value in the dataframe at a particular index.
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df = pd.DataFrame({"A":[1, 5, 3, 4, 2],
"B":[3, 2, 4, 3, 4],
"C":[2, 2, 7, 3, 4],
"D":[4, 3, 6, 12, 7]})
# Print the dataframe
df

dataframe.set_value()
function to set value of a particular index.
# set value of a cell which has index label "2" and column label "B"
df.set_value(2, 'B', 100)

set_value()
function to set value of a non-existent index and column in the dataframe.
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df = pd.DataFrame({"A":[1, 5, 3, 4, 2],
"B":[3, 2, 4, 3, 4],
"C":[2, 2, 7, 3, 4],
"D":[4, 3, 6, 12, 7]})
# Print the dataframe
df

dataframe.set_value()
function to set value of a particular index.
# set value of a cell which has index label "8" and column label "8"
df.set_value(8, 8, 1000)
