Python | Pandas DatetimeIndex.strftime()
Last Updated :
24 Dec, 2018
Improve
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
Python3
Output :
Now we want to convert the given DatetimeIndex object to
Python3
Output :
As we can see in the output, the function has changed the format of the DatetimeIndex object to the desired format.
Example #2: Use
Python3
Output :
Now we want to convert the given DatetimeIndex object to
Python3
Output :
As we can see in the output, the function has changed the format of the DatetimeIndex object to the desired format.
DatetimeIndex.strftime()
function convert to Index using specified date_format. The function return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library.
Syntax: DatetimeIndex.strftime(date_format) Parameters : date_format : Date format string (e.g. ā%Y-%m-%dā). Return : Index of formatted stringsExample #1: Use
DatetimeIndex.strftime()
function to convert the given DatetimeIndex object to the specified format.
# importing pandas as pd
import pandas as pd
# Create the DatetimeIndex
# Here 'Q' represents quarter end frequency
didx = pd.DatetimeIndex(start ='2000-01-15 08:00', freq ='Q',
periods = 4, tz ='Asia/Calcutta')
# Print the DatetimeIndex
print(didx)

('%B %d, %Y, %r')
format.
# change the datetime format.
didx.strftime('% B % d, % Y, % r')

DatetimeIndex.strftime()
function to convert the given DatetimeIndex object to the specified format.
# importing pandas as pd
import pandas as pd
# Create the DatetimeIndex
# Here 'MS' represents month start frequency
didx = pd.date_range(pd.Timestamp("2000-01-15 08:00"),
periods = 5, freq ='MS')
# Print the DatetimeIndex
print(didx)

('%B %Y, %r')
format.
# change the datetime format.
didx.strftime('% B % Y, % r')
