Python | Pandas Series.sum()
Last Updated :
10 Oct, 2018
Improve
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
Python3 1==
Output:
Python3 1==
Output:
Python3 1==
Output:
Series.sum()
method is used to get the sum of the values for the requested axis.
Syntax: Series.sum(axis=None, skipna=None, level=None, numeric_only=None, min_count=0) Parameters: axis : {index (0)} skipna[boolean, default True] : Exclude NA/null values. If an entire row/column is NA, the result will be NA level[int or level name, default None] : If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. numeric_only[boolean, default None] : Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns: Returns the sum of the values for the requested axisCode #1: By default, the sum of an empty or all-NA Series is 0.
# importing pandas module
import pandas as pd
# min_count = 0 is the default
pd.Series([]).sum()
# When passed min_count = 1,
# sum of an empty series will be NaN
pd.Series([]).sum(min_count = 1)
0.0 nanCode #2:
# importing pandas module
import pandas as pd
# making data frame csv at url
data = pd.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv")
# sum of all salary
val = data['Salary'].sum()
val
2159837111.0Code #3:
# importing pandas module
import pandas as pd
# making a dict of list
data = {'name': ['John', 'Peter', 'Karl'],
'age' : [23, 42, 19]}
val = pd.DataFrame(data)
# sum of all salary
val['total'] = val['age'].sum()
val
