Replace the column contains the values 'yes' and 'no' with True and False In Python-Pandas
Let’s discuss a program To change the values from a column that contains the values 'YES' and 'NO' with TRUE and FALSE.
First, Let's see a dataset.
Code:
# import pandas library
import pandas as pd
# load csv file
df = pd.read_csv("supermarkets.csv")
# show the dataframe
df
Output :

For downloading the used csv file Click Here.
Now, Let's see the multiple ways to do this task:
Method 1: Using Series.map().
This method is used to map values from two series having one column the same.
Syntax: Series.map(arg, na_action=None).
Return type: Pandas Series with the same as an index as a caller.
Example: Replace the ‘commissioned' column contains the values 'yes' and 'no' with True and False.
Code:
# import pandas library
import pandas as pd
# load csv file
df = pd.read_csv("supermarkets.csv")
# replace the ‘commissioned' column contains
# the values 'yes' and 'no' with
# True and False:
df['commissioned'] = df['commissioned'].map(
{'yes':True ,'no':False})
# show the dataframe
df
Output :

Method 2: Using DataFrame.replace().
This method is used to replace a string, regex, list, dictionary, series, number, etc. from a data frame.
Syntax: DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method=’pad’, axis=None)
Return type: Updated Data frame
Example: Replace the ‘commissioned' column contains the values 'yes' and 'no' with True and False.
Code:
# import pandas library
import pandas as pd
# load csv file
df = pd.read_csv("supermarkets.csv")
# replace the ‘commissioned' column
# contains the values 'yes' and 'no'
# with True and False:
df = df.replace({'commissioned': {'yes': True,
'no': False}})
# show the dataframe
df
Output:
