sympy.integrals.inverse_laplace_transform() in python
Last Updated :
04 Feb, 2023
Improve
With the help of inverse_laplace_transform() method, we can compute the inverse of laplace transformation of F(s).
Syntax : inverse_laplace_transform(F, s, t)
Return : Return the unevaluated transformation function.
Example #1 :
In this example, we can see that by using inverse_laplace_transform() method, we are able to compute the inverse laplace transformation and return the unevaluated function.
# import inverse_laplace_transform
from sympy.integrals.transforms import inverse_laplace_transform
from sympy import exp, Symbol
from sympy.abc import s, t
a = Symbol('a', positive = True)
# Using inverse_laplace_transform() method
gfg = inverse_laplace_transform(exp(-a * s)/s, s, t)
print(gfg)
Output :
Heaviside(-a + t)
Example #2 :
# import inverse_laplace_transform
from sympy.integrals.transforms import inverse_laplace_transform
from sympy import exp, Symbol
from sympy.abc import s, t
a = Symbol('a', positive = True)
# Using inverse_laplace_transform() method
gfg = inverse_laplace_transform(exp(-a * s)/s, s, 5)
print(gfg)
Output :
Heaviside(5 - a)
Example #3:
# import inverse_laplace_transform
from sympy.integrals.transforms import inverse_laplace_transform
from sympy import exp, Symbol, sin
from sympy.abc import s, t
a = Symbol('a', positive = True)
# Using inverse_laplace_transform() method
gfg = inverse_laplace_transform(1/(s**2 + a**2), s, 5)
print(gfg)
Output :
sin(5*a)/a