sympy.stats.NormalGamma() function in Python
Last Updated :
18 Aug, 2020
Improve
With the help of sympy.stats.NormalGamma() method, we can create a bivariate joint random variable with multivariate Normal gamma distribution.
Syntax: sympy.stats.NormalGamma(syms, mu, lamda, alpha, beta) Parameters: syms: the symbol, for identifying the random variable mu: a real number, the mean of the normal distribution lambda: a positive integer alpha: a positive integer beta: a positive integer Returns: a bivariate joint random variable with multivariate Normal gamma distribution.
Example #1 :
# import sympy, NormalGamma, density, symbols
from sympy.stats import density, NormalGamma
from sympy import symbols, pprint
y, z = symbols('y z')
# using sympy.stats.NormalGamma() method
X = NormalGamma('X', 0, 1, 2, 3)
norGammaDist = density(X)(y, z)
pprint(norGammaDist)
Output :
2 -y *z ------ ___ 3/2 -3*z 2 9*\/ 2 *z *e *e -------------------------- ____ 2*\/ pi
Example #2 :
# import sympy, NormalGamma, density, symbols
from sympy.stats import density, NormalGamma
from sympy import symbols, pprint
y, z = symbols('y z')
# using sympy.stats.NormalGamma() method
X = NormalGamma('X', 1 / 2, 3, 4, 6)
norGammaDist = density(X)(y, z)
pprint(norGammaDist)
Output :
2 -3*z*(y - 1/2) ---------------- ___ 7/2 -6*z 2 108*\/ 6 *z *e *e -------------------------------------- ____ \/ pi