Selecting & Filtering Data

This quiz helps to test knowledge and skills in efficiently selecting, filtering, and manipulating data using Python’s powerful Pandas library.

Last Updated :
Discuss
Comments

Question 1

What is the correct way to select a column named sales from a DataFrame df?

  • df.sales

  • df['sales']

  • df[0]

  • df.select('sales')

Question 2

How do you select rows where the sales column is greater than 500?

Python
import pandas as pd
df = pd.DataFrame({'sales': [300, 700, 200, 900]})


  • df[df.sales > 500]

  • df[df['sales'] > 500]

  • df[df['sales'] < 500]

  • Both 1 and 2

Question 3

Which method is used to select specific rows and columns by labels?

  • .iloc

  • .loc

  • .query

  • .filter

Question 4

How do you select rows 2 to 4 (inclusive) and columns A and B using .loc?

Python
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [6, 7, 8, 9, 10], 'C': [11, 12, 13, 14, 15]})


  • df.loc[2:4, ['A', 'B']]

  • df.iloc[2:4, ['A', 'B']]

  • df.loc[1:3, ['A', 'B']]

  • df.loc[:, ['A', 'B']]

Question 5

How do you select rows where column C contains the value 15?

  • df[df['C'] == 15]

  • df[df.C == 15]

  • df[df['C'] > 15]

  • Both 1 and 2

Question 6

What is the output of the following code?

Python
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
print(df.iloc[1:3, 0])


  • 1, 2

  • 2, 3

  • 1, 3

  • 2

Question 7

How can you filter rows where column A is greater than 3 and column B is less than 10?

Python
import panads as pd
df = pd.DataFrame({'A': [1, 2, 4, 5], 'B': [6, 7, 8, 9]})


  • df[(df['A'] > 3) & (df['B'] < 10)]

  • df[df['A'] > 3 & df['B'] < 10]

  • df[df['A'] > 3 | df['B'] < 10]

  • df.query('A > 3 and B < 10')

Question 8

How do you drop rows with missing values in column A?

  • df.dropna()

  • df.dropna(subset=['A'])

  • df.fillna(0)

  • df.drop(columns=['A'])

Question 9

What does the following code return?

Python
import pandas as pd 
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df.loc[0:1, 'A':'B']


  • Rows 0 to 1 and columns A to B

  • Rows 0 to 1 and only column A

  • An error

  • All rows and columns

Question 10

What is the most efficient way to filter rows where the category column contains "electronics"?

  • df[df['category'] == 'electronics']

  • df[df['category'].str.contains('electronics')]

  • df.query('category == "electronics"')

  • df.filter('electronics')

Tags:

There are 10 questions to complete.

Take a part in the ongoing discussion