Trigonometric Substitution: Method, Formula and Solved Examples
Trigonometric substitution is a process in which the substitution of a trigonometric function into another expression takes place. It is used to evaluate integrals or it is a method for finding antiderivatives of functions that contain square roots of quadratic expressions or rational powers of the form
The method of trigonometric substitution may be called upon when other more common and easier-to-use methods of integration have failed. Trigonometric substitution assumes that you are familiar with standard trigonometric identities, the use of differential notation, integration using u-substitution, and the integration of trigonometric functions.
x = f(θ)
⇒ dx = f'(θ)dθ
Read in Detail: Calculus in Maths

When to Use Trigonometric Substitution?
We use trigonometric substitution in the following cases,
Expression | Substitution |
---|---|
a2 + x2 | x = a tan θ |
a2 - x2 | x = a sin θ |
x2 - a2 | x = a sec θ |
| x = a cos 2θ |
| x = α cos2θ + β sin2θ |
How to Apply Trigonometric Substitution Method?
We can apply the trigonometric substitution method as discussed below,
Integral with a2 - x2
Let's consider an example of the Integral involving a2 - x2.
Example:
\int \frac{1}{\sqrt{a^2-x^2}}\hspace{0.1cm}dx Lets put, x = a sinθ
⇒ dx = a cosθ dθ
Thus, I =
\int \frac{a\hspace{0.1cm}cos\theta \hspace{0.1cm}d\theta}{\sqrt{(a^2-(a\hspace{0.1cm}sin\theta)^2)}} ⇒ I =
\int \frac{a\hspace{0.1cm}cos\theta \hspace{0.1cm}d\theta}{\sqrt{(a^2cos^2\theta)}} ⇒ I =
\int 1. d\theta ⇒ I = θ + c
As, x = a sinθ
⇒ θ =
sin^{-1}(\frac{x}{a}) ⇒ I =
sin^{-1}(\frac{x}{a}) + c
Integral with x2 + a2
Let's consider an example of the Integral involving x2 + a2.
Example: Find the integral
Solution:
Lets put x = a tanθ
⇒ dx = a sec2θ dθ, we get
Thus, I =
\int \frac{1}{(a\hspace{0.1cm}tan\theta)^2+a^2}\hspace{0.1cm}(a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta) ⇒ I =
\int \frac{a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta}{a^2(sec^2\theta)} ⇒ I =
\frac{1}{a}\int 1.d\theta ⇒ I =
\frac{1}{a} \theta + cAs, x = a tanθ
⇒ θ =
tan^{-1}(\frac{x}{a}) ⇒ I =
\frac{1}{a}tan^{-1}(\frac{x}{a}) + c
Integral with a2 + x2.
Let's consider an example of the Integral involving a2+ x2.
Example: Find the integral of
Solution:
Lets put, x = a tanθ
⇒ dx = a sec2θ dθ
Thus, I =
\int \frac{a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta}{\sqrt{(a^2+(a\hspace{0.1cm}tan\theta)^2)}} ⇒ I =
\int \frac{a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta}{\sqrt{(a^2\hspace{0.1cm}sec^2\theta)}} ⇒ I =
\int \frac{a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta}{a\hspace{0.1cm}sec\theta} ⇒ I =
\int sec\hspace{0.1cm}\theta d\theta ⇒ I =
log|sec\hspace{0.1cm}\theta+tan\hspace{0.1cm}\theta| + c ⇒ I =
log|tan\hspace{0.1cm}\theta+\sqrt{1+tan^2\hspace{0.1cm}\theta}| + c ⇒ I =
log|\frac{x}{a}+\sqrt{1+\frac{x^2}{a^2}}|+ c ⇒ I =
log|\frac{x}{a}+\sqrt{\frac{a^2+x^2}{a^2}}|+ c ⇒ I =
log|\frac{x}{a}+\frac{1}{{a}}\sqrt{a^2+x^2}|+ c ⇒ I =
log|x+\sqrt{a^2+x^2}|-log\hspace{0.1cm}a+ c ⇒ I =
log|x+\sqrt{a^2+x^2}|+ c_1
Integral with x2 - a2.
Let's consider an example of the Integral involving x2 - a2.
Example: Find the integral of
Let's put, x = a secθ
⇒ dx = a secθ tanθ dθ
Thus, I =
\int \frac{a\hspace{0.1cm}sec\theta \hspace{0.1cm}tan\theta\hspace{0.1cm}d\theta}{\sqrt{((a\hspace{0.1cm}sec\theta)^2-a^2)}} ⇒ I =
\int \frac{a\hspace{0.1cm}sec\theta \hspace{0.1cm}tan\theta\hspace{0.1cm}d\theta}{(a\hspace{0.1cm}tan\theta)} ⇒ I =
\int sec\theta\hspace{0.1cm}d\theta ⇒ I =
log|sec\hspace{0.1cm}\theta+tan\hspace{0.1cm}\theta| + c ⇒ I =
log|sec\hspace{0.1cm}\theta+\sqrt{sec^2\hspace{0.1cm}\theta-1}| + c ⇒ I =
log|\frac{x}{a}+\sqrt{\frac{x^2}{a^2}-1}|+ c ⇒ I =
log|\frac{x}{a}+\sqrt{\frac{x^2-a^2}{a^2}}|+ c ⇒ I =
log|\frac{x}{a}+\frac{1}{{a}}\sqrt{x^2-a^2}|+ c ⇒ I =
log|x+\sqrt{x^2-a^2}|-log\hspace{0.1cm}a+ c ⇒ I =
log|x+\sqrt{x^2-a^2}|+ c_1
Read More,
Sample Problems on Trigonometric Substitution
Problem 1: Find the integral of
Solution:
Taking 5 common in denominator,
⇒ I =
\frac{1}{5}\int \frac{1}{\sqrt{\frac{9}{25}-x^2}} \hspace{0.1 cm} dx ⇒ I =
\frac{1}{5}\int \frac{1}{\sqrt{(\frac{3}{5})^2-x^2}} \hspace{0.1 cm} dx According to theorem 1, a =
\frac{3}{5} ⇒ I =
\frac{1}{5} \sin^{-1}(\frac{x}{\frac{3}{5}}) + c⇒ I =
\frac{1}{5} sin^{-1}(\frac{5x}{3}) + c
Problem 2: Find the integral of
Solution:
Taking √2 common in denominator,
⇒ I =
\frac{1}{\sqrt{2}}\int \frac{1}{\sqrt{\frac{8}{2}-x^2}} \hspace{0.1 cm} dx ⇒ I =
\frac{1}{\sqrt{2}}\int \frac{1}{\sqrt{(2)^2-x^2}} \hspace{0.1 cm} dx According to theorem 1, a = 2
⇒ I =
\frac{1}{\sqrt{2}} \sin^{-1}(\frac{x}{2}) +c⇒ I =
\frac{1}{\sqrt{2}} \sin^{-1}(\frac{x}{2}) +c
Problem 3: Find the integral of
Solution:
By rearranging, we get
\int x^3\sqrt{3^2-x^2}\hspace{0.1cm}dx Here taking, a = 3 and x = 3 sin θ
⇒ dx = 3 cos θ dθSubstituting these values,
I =
\int (3 sinθ)^3\sqrt{(3^2-(3 sin\theta)^2)}\hspace{0.1cm}3 \hspace{0.1cm}cos \theta\hspace{0.1cm}d\theta
⇒ I =\int 27 \sin^3\theta \hspace{0.1cm}3\sqrt{(1-\sin^2\theta)}\hspace{0.1 cm}3 \hspace{0.1cm}cos \theta\hspace{0.1cm}d\theta
⇒ I =\int 243 \hspace{0.1cm}\sin^3\theta \cos^2\theta\hspace{0.1cm}d\theta
⇒ I = 243\int\hspace{0.1cm}\sin^2\theta \hspace{0.1cm}\sin\theta\hspace{0.1cm}\cos^2\theta\hspace{0.1cm}d\theta
⇒ I = 243\int\hspace{0.1cm}(1-\cos^2\theta) \hspace{0.1cm}\sin\theta\hspace{0.1cm}\cos^2\theta\hspace{0.1cm}d\theta Lets take,
u = cos θ
⇒ du = -sin θ dθSubstituting these values, we get
⇒ I = 243
\int\hspace{0.1cm}(1-u^2) \hspace{0.1cm}u^2\hspace{0.1cm}(-du)
⇒ I = -243\int\hspace{0.1cm}(u^2-u^4) \hspace{0.1cm}du
⇒ I = -243\int\hspace{0.1cm}u^2 \hspace{0.1cm}du - \int\hspace{0.1cm}u^4 \hspace{0.1cm}du
⇒ I = -243[\frac{u^3}{3} - \frac{u^5}{5}] As, u = cos θ and x = 3 sinθ
⇒ cos θ =
\sqrt{1-sin^2\theta}
⇒ u =\sqrt{1-(\frac{x}{3})^2}
⇒ u =(1-\frac{x^2}{9})^{\frac{1}{2}} Hence,I = -243
[\frac{({(1-\frac{x^2}{9})^{\frac{1}{2}})}^3}{3}-\frac{({(1-\frac{x^2}{9})^{\frac{1}{2}})}^5}{5}] ⇒ I = -243
[\frac{(1-\frac{x^2}{9})^{\frac{3}{2}}}{3}-\frac{(1-\frac{x^2}{9})^{\frac{5}{2}}}{5}] + c
Problem 4: Find the integral of
Solution:
Taking 9 common in denominator,
I =
\frac{1}{9}\int \frac{1}{\frac{4}{9}+x^2} \hspace{0.1 cm} dx
⇒ I =\frac{1}{9}\int \frac{1}{(\frac{2}{3})^2+x^2} \hspace{0.1 cm} dx According to theorem 2, a =
\frac{2}{3}
⇒ I =\frac{1}{9} \times \frac{1}{\frac{2}{3}}tan^{-1} \frac{x}{(\frac{2}{3})}
⇒ I =\frac{1}{6}tan^{-1} (\frac{3x}{2})+ c
Problem 5: Find the integral of
Solution:
Taking 4 common in denominator,
I =
\frac{1}{4}\int\frac{1}{\sqrt{x^2+\frac{25}{16}}}
⇒ I =\frac{1}{4}\int\frac{1}{\sqrt{x^2+(\frac{5}{4})^2}} According to theorem 3, a =
\frac{5}{4}
⇒ I =\frac{1}{4}\times log|x+\sqrt{(\frac{5}{4})^2+x^2}|+ c
⇒ I =\frac{1}{4}\times log|\frac{4x+\sqrt{25+16x^2}}{4}|+ c
⇒ I =\frac{1}{4}log|4x+\sqrt{25+16x^2}|-\frac{1}{4}log4+ c
⇒ I =\frac{1}{4}log|4x+\sqrt{25+16x^2}|+ c_1
Problem 6: Find the integral of
Solution:
Taking 2 common in denominator,
I =
\frac{1}{2}\int \frac{1}{\sqrt{x^2-\frac{9}{4}}} \hspace{0.1cm}dx
⇒ I =\frac{1}{2}\int \frac{1}{\sqrt{x^2-(\frac{3}{2})^2}} \hspace{0.1cm}dx According to theorem 4, a =
\frac{3}{2} I =
\frac{1}{2}\times log|x+\sqrt{x^2-(\frac{3}{2})^2}|+c
⇒ I =\frac{1}{2}log|x+\sqrt{x^2-\frac{9}{4}}|+c
⇒ I =\frac{1}{2}log|\frac{2x+\sqrt{x^2-9}}{2}|+c
⇒ I =\frac{1}{2}log|2x+\sqrt{x^2-9}|-\frac{1}{2}log2+c
⇒ I =\frac{1}{2}log|2x+\sqrt{x^2-9}|+c_1
Problem 7: Find the integral of
Solution:
After rearranging, we get
I =
\int \frac{1}{x^2-x+\frac{1}{4}-\frac{1}{4}+1}\hspace{0.1cm}dx
⇒ I =\int \frac{1}{(x-\frac{1}{2})^2+\frac{3}{4})}\hspace{0.1cm}dx
⇒ I =\int \frac{1}{(x-\frac{1}{2})^2+(\sqrt{\frac{3}{4}})^2})\hspace{0.1cm}dx
⇒ I =\int \frac{1}{(x-\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2})\hspace{0.1cm}dx According to the theorem 2, we have
x = x-
\frac{1}{2} and a =\frac{\sqrt{3}}{2}
⇒ I =\frac{1}{\frac{\sqrt{3}}{2}} tan^{ -1} \frac{(x-\frac{1}{2})}{\frac{\sqrt{3}}{2}}
⇒ I =\frac{2}{\sqrt{3}} tan^{ -1} \frac{(2x-1)}{\sqrt{3}} + c
Practice Problems on Trigonometric Substitution
1. Evaluate:
2. Find:
3. Compute:
4. Evaluate:
5. Find:
6. Compute:
7. Evaluate:
8. Find:
9. Compute:
10. Evaluate: