Open In App

Trigonometric Substitution: Method, Formula and Solved Examples

Last Updated : 02 Jan, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Trigonometric substitution is a process in which the substitution of a trigonometric function into another expression takes place. It is used to evaluate integrals or it is a method for finding antiderivatives of functions that contain square roots of quadratic expressions or rational powers of the form \frac{p}{2}(where p is an integer) of quadratic expressions. Examples of such expressions are:

({x^2+4})^\frac{3}{2}or \sqrt{25-x^2} or etc.

The method of trigonometric substitution may be called upon when other more common and easier-to-use methods of integration have failed. Trigonometric substitution assumes that you are familiar with standard trigonometric identities, the use of differential notation, integration using u-substitution, and the integration of trigonometric functions.

x = f(θ)
⇒ dx = f'(θ)dθ

Read in Detail: Calculus in Maths

Trigonometric Substitution
Trigonometric Substitution

When to Use Trigonometric Substitution?

We use trigonometric substitution in the following cases,

Expression

Substitution

a2 + x2

x = a tan θ 
OR
x = a cot θ

a2 - x2

x = a sin θ 
OR
x = a cos θ

x2 - a2

x = a sec θ 
OR
x = a cosec θ

\sqrt{\frac{a-x}{a+x}}              
OR 
\sqrt{\frac{a+x}{a-x}}

x = a cos 2θ

\sqrt{\frac{x-\alpha}{\beta-x}}                 
OR
\sqrt{(x-\alpha)(x-\beta)}

x = α cos2θ + β sin2θ

How to Apply Trigonometric Substitution Method?

We can apply the trigonometric substitution method as discussed below,

Integral with a2 - x2

Let's consider an example of the Integral involving a2 - x2.

Example: \int \frac{1}{\sqrt{a^2-x^2}}\hspace{0.1cm}dx

Lets put, x = a sinθ

⇒ dx = a cosθ dθ

Thus, I = \int \frac{a\hspace{0.1cm}cos\theta \hspace{0.1cm}d\theta}{\sqrt{(a^2-(a\hspace{0.1cm}sin\theta)^2)}}

⇒ I = \int \frac{a\hspace{0.1cm}cos\theta \hspace{0.1cm}d\theta}{\sqrt{(a^2cos^2\theta)}}

⇒ I = \int 1. d\theta

⇒ I = θ + c

As, x = a sinθ

⇒ θ = sin^{-1}(\frac{x}{a})

⇒ I = sin^{-1}(\frac{x}{a}) + c

Integral with x2 + a2

Let's consider an example of the Integral involving x2 + a2.

Example: Find the integral \bold{\int \frac{1}{x^2+a^2}\hspace{0.1cm}dx}

Solution:

Lets put x = a tanθ

⇒ dx = a sec2θ dθ, we get

Thus, I = \int \frac{1}{(a\hspace{0.1cm}tan\theta)^2+a^2}\hspace{0.1cm}(a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta)

⇒ I = \int \frac{a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta}{a^2(sec^2\theta)}

⇒ I = \frac{1}{a}\int 1.d\theta

⇒ I = \frac{1}{a} \theta             + c

As, x = a tanθ

⇒ θ = tan^{-1}(\frac{x}{a})

⇒ I = \frac{1}{a}tan^{-1}(\frac{x}{a})             + c

Integral with a2 + x2.

Let's consider an example of the Integral involving a2+ x2.

Example: Find the integral of \bold{\int \frac{1}{\sqrt{a^2+x^2}}\hspace{0.1cm}dx}

Solution:

Lets put, x = a tanθ

⇒ dx = a sec2θ dθ

Thus, I = \int \frac{a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta}{\sqrt{(a^2+(a\hspace{0.1cm}tan\theta)^2)}}

⇒ I = \int \frac{a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta}{\sqrt{(a^2\hspace{0.1cm}sec^2\theta)}}

⇒ I = \int \frac{a\hspace{0.1cm}sec^2\theta \hspace{0.1cm}d\theta}{a\hspace{0.1cm}sec\theta}

⇒ I = \int sec\hspace{0.1cm}\theta d\theta

⇒ I = log|sec\hspace{0.1cm}\theta+tan\hspace{0.1cm}\theta| + c

⇒ I = log|tan\hspace{0.1cm}\theta+\sqrt{1+tan^2\hspace{0.1cm}\theta}| + c

⇒ I = log|\frac{x}{a}+\sqrt{1+\frac{x^2}{a^2}}|+ c

⇒ I = log|\frac{x}{a}+\sqrt{\frac{a^2+x^2}{a^2}}|+ c

⇒ I = log|\frac{x}{a}+\frac{1}{{a}}\sqrt{a^2+x^2}|+ c

⇒ I = log|x+\sqrt{a^2+x^2}|-log\hspace{0.1cm}a+ c

⇒ I = log|x+\sqrt{a^2+x^2}|+ c_1

Integral with x2 - a2.

Let's consider an example of the Integral involving x2 - a2.

Example: Find the integral of \bold{\int \frac{1}{\sqrt{x^2-a^2}}\hspace{0.1cm}dx}

Let's put, x = a secθ

⇒ dx = a secθ tanθ dθ

Thus, I = \int \frac{a\hspace{0.1cm}sec\theta \hspace{0.1cm}tan\theta\hspace{0.1cm}d\theta}{\sqrt{((a\hspace{0.1cm}sec\theta)^2-a^2)}}

⇒ I = \int \frac{a\hspace{0.1cm}sec\theta \hspace{0.1cm}tan\theta\hspace{0.1cm}d\theta}{(a\hspace{0.1cm}tan\theta)}

⇒ I = \int sec\theta\hspace{0.1cm}d\theta

⇒ I = log|sec\hspace{0.1cm}\theta+tan\hspace{0.1cm}\theta| + c

⇒ I = log|sec\hspace{0.1cm}\theta+\sqrt{sec^2\hspace{0.1cm}\theta-1}| + c

⇒ I = log|\frac{x}{a}+\sqrt{\frac{x^2}{a^2}-1}|+ c

⇒ I = log|\frac{x}{a}+\sqrt{\frac{x^2-a^2}{a^2}}|+ c

⇒ I = log|\frac{x}{a}+\frac{1}{{a}}\sqrt{x^2-a^2}|+ c

⇒ I = log|x+\sqrt{x^2-a^2}|-log\hspace{0.1cm}a+ c

⇒ I = log|x+\sqrt{x^2-a^2}|+ c_1

Read More,

Sample Problems on Trigonometric Substitution

Problem 1: Find the integral of \bold{\int \frac{1}{\sqrt{9-25x^2}} \hspace{0.1cm}dx}

Solution:

Taking 5 common in denominator,

⇒ I = \frac{1}{5}\int \frac{1}{\sqrt{\frac{9}{25}-x^2}} \hspace{0.1 cm} dx

⇒ I = \frac{1}{5}\int \frac{1}{\sqrt{(\frac{3}{5})^2-x^2}} \hspace{0.1 cm} dx

According to theorem 1, a = \frac{3}{5}

⇒ I = \frac{1}{5} \sin^{-1}(\frac{x}{\frac{3}{5}}) + c

⇒ I = \frac{1}{5} sin^{-1}(\frac{5x}{3}) + c

Problem 2: Find the integral of  \bold{\int \frac{1}{\sqrt{8-2x^2}} \hspace{0.1cm}dx}

Solution:

Taking √2 common in denominator,

⇒ I = \frac{1}{\sqrt{2}}\int \frac{1}{\sqrt{\frac{8}{2}-x^2}} \hspace{0.1 cm} dx

⇒ I = \frac{1}{\sqrt{2}}\int \frac{1}{\sqrt{(2)^2-x^2}} \hspace{0.1 cm} dx

According to theorem 1, a = 2

⇒ I = \frac{1}{\sqrt{2}} \sin^{-1}(\frac{x}{2}) +c

⇒ I = \frac{1}{\sqrt{2}} \sin^{-1}(\frac{x}{2}) +c

Problem 3: Find the integral of \bold{\int x^3\sqrt{9-x^2}\hspace{0.1cm}dx}

Solution:

By rearranging, we get

\int x^3\sqrt{3^2-x^2}\hspace{0.1cm}dx

Here taking, a = 3 and x = 3 sin θ
⇒ dx = 3 cos θ dθ

Substituting these values,

I = \int (3 sinθ)^3\sqrt{(3^2-(3 sin\theta)^2)}\hspace{0.1cm}3 \hspace{0.1cm}cos \theta\hspace{0.1cm}d\theta
⇒ I = \int 27 \sin^3\theta \hspace{0.1cm}3\sqrt{(1-\sin^2\theta)}\hspace{0.1 cm}3 \hspace{0.1cm}cos \theta\hspace{0.1cm}d\theta
⇒ I = \int 243 \hspace{0.1cm}\sin^3\theta \cos^2\theta\hspace{0.1cm}d\theta
⇒ I = 243 \int\hspace{0.1cm}\sin^2\theta \hspace{0.1cm}\sin\theta\hspace{0.1cm}\cos^2\theta\hspace{0.1cm}d\theta
⇒ I = 243 \int\hspace{0.1cm}(1-\cos^2\theta) \hspace{0.1cm}\sin\theta\hspace{0.1cm}\cos^2\theta\hspace{0.1cm}d\theta

Lets take,

u = cos θ
⇒ du = -sin θ dθ

Substituting these values, we get

⇒ I = 243 \int\hspace{0.1cm}(1-u^2) \hspace{0.1cm}u^2\hspace{0.1cm}(-du)
⇒ I = -243 \int\hspace{0.1cm}(u^2-u^4) \hspace{0.1cm}du
⇒ I = -243 \int\hspace{0.1cm}u^2 \hspace{0.1cm}du - \int\hspace{0.1cm}u^4 \hspace{0.1cm}du
⇒ I = -243 [\frac{u^3}{3} - \frac{u^5}{5}]

As, u = cos θ and x = 3 sinθ

⇒ cos θ = \sqrt{1-sin^2\theta}
⇒ u = \sqrt{1-(\frac{x}{3})^2}
⇒ u = (1-\frac{x^2}{9})^{\frac{1}{2}}

Hence,I =  -243 [\frac{({(1-\frac{x^2}{9})^{\frac{1}{2}})}^3}{3}-\frac{({(1-\frac{x^2}{9})^{\frac{1}{2}})}^5}{5}]

⇒ I = -243 [\frac{(1-\frac{x^2}{9})^{\frac{3}{2}}}{3}-\frac{(1-\frac{x^2}{9})^{\frac{5}{2}}}{5}] + c

Problem 4: Find the integral of \bold{\int \frac{1}{4+9x^2} \hspace{0.1cm}dx}

Solution:

Taking 9 common in denominator,

I = \frac{1}{9}\int \frac{1}{\frac{4}{9}+x^2} \hspace{0.1 cm} dx
⇒ I = \frac{1}{9}\int \frac{1}{(\frac{2}{3})^2+x^2} \hspace{0.1 cm} dx

According to theorem 2, a = \frac{2}{3}
⇒ I = \frac{1}{9} \times \frac{1}{\frac{2}{3}}tan^{-1} \frac{x}{(\frac{2}{3})}
⇒ I = \frac{1}{6}tan^{-1} (\frac{3x}{2})+ c

Problem 5: Find the integral of \bold{\int \frac{1}{\sqrt{16x^2+25}}\hspace{0.1cm}dx}

Solution:

Taking 4 common in denominator,

I = \frac{1}{4}\int\frac{1}{\sqrt{x^2+\frac{25}{16}}}
⇒ I = \frac{1}{4}\int\frac{1}{\sqrt{x^2+(\frac{5}{4})^2}}

According to theorem 3, a = \frac{5}{4}
⇒ I = \frac{1}{4}\times log|x+\sqrt{(\frac{5}{4})^2+x^2}|+ c
⇒ I = \frac{1}{4}\times log|\frac{4x+\sqrt{25+16x^2}}{4}|+ c
⇒ I = \frac{1}{4}log|4x+\sqrt{25+16x^2}|-\frac{1}{4}log4+ c
⇒ I = \frac{1}{4}log|4x+\sqrt{25+16x^2}|+ c_1

Problem 6: Find the integral of \bold{\int \frac{1}{\sqrt{4x^2-9}}\hspace{0.1cm}dx}             .

Solution:

Taking 2 common in denominator,

I = \frac{1}{2}\int \frac{1}{\sqrt{x^2-\frac{9}{4}}} \hspace{0.1cm}dx
⇒ I = \frac{1}{2}\int \frac{1}{\sqrt{x^2-(\frac{3}{2})^2}} \hspace{0.1cm}dx

According to theorem 4, a = \frac{3}{2}

I = \frac{1}{2}\times log|x+\sqrt{x^2-(\frac{3}{2})^2}|+c
⇒ I = \frac{1}{2}log|x+\sqrt{x^2-\frac{9}{4}}|+c
⇒ I = \frac{1}{2}log|\frac{2x+\sqrt{x^2-9}}{2}|+c
⇒ I = \frac{1}{2}log|2x+\sqrt{x^2-9}|-\frac{1}{2}log2+c
⇒ I = \frac{1}{2}log|2x+\sqrt{x^2-9}|+c_1

Problem 7: Find the integral of \bold{\int \frac{1}{x^2-x+1}\hspace{0.1cm}dx}             .

Solution:

After rearranging, we get

I = \int \frac{1}{x^2-x+\frac{1}{4}-\frac{1}{4}+1}\hspace{0.1cm}dx
⇒ I = \int \frac{1}{(x-\frac{1}{2})^2+\frac{3}{4})}\hspace{0.1cm}dx
⇒ I = \int \frac{1}{(x-\frac{1}{2})^2+(\sqrt{\frac{3}{4}})^2})\hspace{0.1cm}dx
⇒ I = \int \frac{1}{(x-\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2})\hspace{0.1cm}dx

According to the theorem 2, we have

x = x-\frac{1}{2}and a = \frac{\sqrt{3}}{2}
⇒ I = \frac{1}{\frac{\sqrt{3}}{2}} tan^{ -1} \frac{(x-\frac{1}{2})}{\frac{\sqrt{3}}{2}}
⇒ I = \frac{2}{\sqrt{3}} tan^{ -1} \frac{(2x-1)}{\sqrt{3}} + c

Practice Problems on Trigonometric Substitution

1. Evaluate: \int \sqrt{9 - x^2} \, dx

2. Find: \int \frac{dx}{x^2 - 4}

3. Compute: \int \frac{x \, dx}{x^2 + 4}

4. Evaluate: \int \sqrt{x^2 + 16} \, dx

5. Find: \int \frac{dx}{25 - x^2}

6. Compute: \int \sqrt{16 - x^2} \, dx

7. Evaluate: \int \frac{x^2 \, dx}{x^2 + 9}

8. Find: \int \frac{dx}{x^2 + 1}

9. Compute: \int \frac{dx}{x^2 - 1}

10. Evaluate: \int \frac{dx}{4 - x^2}


Next Article

Similar Reads