Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
FullSimplify
  • See Also
    • Simplify
    • Factor
    • Expand
    • PowerExpand
    • ComplexExpand
    • TrigExpand
    • Element
    • FunctionExpand
    • Assuming
    • RootReduce
    • TrigFactor
    • TrigReduce
    • FindEquationalProof
    • ArraySimplify
    • ArrayExpand
  • Related Guides
    • Formula Manipulation
    • Trigonometric Functions
    • Theorem Proving
    • Assumptions and Domains
    • Algebraic Transformations
    • Mathematical Data
    • Algebraic Numbers
    • Prime Numbers
  • Tech Notes
    • Simplifying Algebraic Expressions
    • Simplification
    • Using Assumptions
    • Working with Special Functions
    • Implementation notes: Algebra and Calculus
    • See Also
      • Simplify
      • Factor
      • Expand
      • PowerExpand
      • ComplexExpand
      • TrigExpand
      • Element
      • FunctionExpand
      • Assuming
      • RootReduce
      • TrigFactor
      • TrigReduce
      • FindEquationalProof
      • ArraySimplify
      • ArrayExpand
    • Related Guides
      • Formula Manipulation
      • Trigonometric Functions
      • Theorem Proving
      • Assumptions and Domains
      • Algebraic Transformations
      • Mathematical Data
      • Algebraic Numbers
      • Prime Numbers
    • Tech Notes
      • Simplifying Algebraic Expressions
      • Simplification
      • Using Assumptions
      • Working with Special Functions
      • Implementation notes: Algebra and Calculus

FullSimplify[expr]

tries a wide range of transformations on expr involving elementary and special functions and returns the simplest form it finds.

FullSimplify[expr,assum]

does simplification using assumptions.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Options  
Assumptions  
ComplexityFunction  
ExcludedForms  
TimeConstraint  
TransformationFunctions  
Trig  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • Simplify
    • Factor
    • Expand
    • PowerExpand
    • ComplexExpand
    • TrigExpand
    • Element
    • FunctionExpand
    • Assuming
    • RootReduce
    • TrigFactor
    • TrigReduce
    • FindEquationalProof
    • ArraySimplify
    • ArrayExpand
  • Related Guides
    • Formula Manipulation
    • Trigonometric Functions
    • Theorem Proving
    • Assumptions and Domains
    • Algebraic Transformations
    • Mathematical Data
    • Algebraic Numbers
    • Prime Numbers
  • Tech Notes
    • Simplifying Algebraic Expressions
    • Simplification
    • Using Assumptions
    • Working with Special Functions
    • Implementation notes: Algebra and Calculus
    • See Also
      • Simplify
      • Factor
      • Expand
      • PowerExpand
      • ComplexExpand
      • TrigExpand
      • Element
      • FunctionExpand
      • Assuming
      • RootReduce
      • TrigFactor
      • TrigReduce
      • FindEquationalProof
      • ArraySimplify
      • ArrayExpand
    • Related Guides
      • Formula Manipulation
      • Trigonometric Functions
      • Theorem Proving
      • Assumptions and Domains
      • Algebraic Transformations
      • Mathematical Data
      • Algebraic Numbers
      • Prime Numbers
    • Tech Notes
      • Simplifying Algebraic Expressions
      • Simplification
      • Using Assumptions
      • Working with Special Functions
      • Implementation notes: Algebra and Calculus

FullSimplify

FullSimplify[expr]

tries a wide range of transformations on expr involving elementary and special functions and returns the simplest form it finds.

FullSimplify[expr,assum]

does simplification using assumptions.

Details and Options

  • FullSimplify will always yield at least as simple a form as Simplify, but may take substantially longer.
  • FullSimplify uses RootReduce on expressions that involve Root objects.
  • FullSimplify does transformations on most kinds of special functions.
  • With assumptions of the form ForAll[vars,axioms], FullSimplify can simplify expressions and equations involving symbolic functions. »
  • You can specify default assumptions for FullSimplify using Assuming.
  • The following options can be given:
  • Assumptions $Assumptionsdefault assumptions to append to assum
    ComplexityFunction Automatichow to assess the complexity of each form generated
    ExcludedForms {}patterns specifying forms of subexpression that should not be touched
    TimeConstraint Infinityfor how many seconds to try doing any particular transformation
    TransformationFunctions Automaticfunctions to try in transforming the expression
    Trig Truewhether to do trigonometric as well as algebraic transformations
  • Assumptions can consist of equations, inequalities, domain specifications such as x∈Integers, and logical combinations of these.
  • With the setting TimeConstraint->{tloc,ttot}, at most tloc seconds are spent for any particular transformation, and at most ttot seconds are spent for all transformations before the best result is returned.
  • FullSimplify can be used with symbolic array expressions.

Examples

open all close all

Basic Examples  (3)

Simplify an expression involving special functions:

Simplify using assumptions:

Prove a simple theorem from the assumption of associativity:

Scope  (9)

Simplify polynomials:

Simplify a hyperbolic expression to an exponential form:

Simplify an exponential expression to a trigonometric form:

Simplify an algebraic number:

Simplify transcendental numbers:

Simplify expressions involving special functions:

Simplify expressions using assumptions:

Prove theorems based on axiom systems:

Any expression can be used as a variable:

Variables not quantified in the axioms are treated as constants:

Prove existence of right inverses assuming left identity and left inverses exist:

Simplify symbolic arrays expressions:

Options  (6)

Assumptions  (1)

Assumptions can be given both as an argument and as an option value:

The default value of the Assumptions option is $Assumptions:

When assumptions are given as an argument, $Assumptions is used as well:

Specifying assumptions as an option value prevents FullSimplify from using $Assumptions:

ComplexityFunction  (1)

By default, this expression is not simplified:

This complexity function makes ChebyshevT more expensive than other functions:

ExcludedForms  (1)

This gives a result in terms of Arg[x]:

This specifies that Log[x] should not be transformed:

TimeConstraint  (1)

This takes a long time due to expansion of trigonometric functions:

The most time‐consuming transformation is not the one that does the simplification:

With transformations restricted to 100 ms, the simplification does not happen:

TransformationFunctions  (1)

By default, FullSimplify does not use Reduce:

This makes FullSimplify use Reduce with respect to x over the real domain:

Trig  (1)

By default, FullSimplify uses trigonometric identities:

With Trig->False, FullSimplify does not use trigonometric identities:

Applications  (6)

Prove that a solution satisfies its equations:

Simplify expressions involving Mod:

Prove that an operation g with associativity, left neutral element, and left inverse defines a group:

Prove commutativity from Wolfram's minimal axiom for Boolean algebra:

Prove that a fixed-point combinator exists:

Prove a theorem about meet (⋁) and join (⋀):

Properties & Relations  (7)

The output is generically equivalent to the input:

FullSimplify uses a wider range of transformations than Simplify:

FullSimplify uses several expansion transformations, including Expand:

TrigExpand:

PiecewiseExpand:

FunctionExpand:

LogicalExpand:

PowerExpand makes special assumptions on input and is not used by FullSimplify:

ComplexExpand assumes variables to be real and is also not used by FullSimplify:

FullSimplify uses several factoring transformations, including Factor:

FactorSquareFree:

TrigFactor:

For algebraic numbers, RootReduce and ToRadicals are used:

For rational functions, Together and Apart are used:

Possible Issues  (3)

Some of the transformations used by FullSimplify are only generically correct:

Results of simplification of singular expressions are uncertain:

This result is caused by automatic evaluation:

Results of simplification may depend on the names of symbols:

Neat Examples  (1)

FullSimplify knows about Fermat's last theorem:

See Also

Simplify  Factor  Expand  PowerExpand  ComplexExpand  TrigExpand  Element  FunctionExpand  Assuming  RootReduce  TrigFactor  TrigReduce  FindEquationalProof  ArraySimplify  ArrayExpand

Tech Notes

    ▪
  • Simplifying Algebraic Expressions
  • ▪
  • Simplification
  • ▪
  • Using Assumptions
  • ▪
  • Working with Special Functions
  • ▪
  • Implementation notes: Algebra and Calculus

Related Guides

    ▪
  • Formula Manipulation
  • ▪
  • Trigonometric Functions
  • ▪
  • Theorem Proving
  • ▪
  • Assumptions and Domains
  • ▪
  • Algebraic Transformations
  • ▪
  • Mathematical Data
  • ▪
  • Algebraic Numbers
  • ▪
  • Prime Numbers

Related Links

  • NKS|Online  (A New Kind of Science)

History

Introduced in 1996 (3.0) | Updated in 1999 (4.0) ▪ 2000 (4.1) ▪ 2002 (4.2) ▪ 2003 (5.0) ▪ 2007 (6.0) ▪ 2014 (10.0) ▪ 2025 (14.2)

Wolfram Research (1996), FullSimplify, Wolfram Language function, https://reference.wolfram.com/language/ref/FullSimplify.html (updated 2025).

Text

Wolfram Research (1996), FullSimplify, Wolfram Language function, https://reference.wolfram.com/language/ref/FullSimplify.html (updated 2025).

CMS

Wolfram Language. 1996. "FullSimplify." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/FullSimplify.html.

APA

Wolfram Language. (1996). FullSimplify. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FullSimplify.html

BibTeX

@misc{reference.wolfram_2025_fullsimplify, author="Wolfram Research", title="{FullSimplify}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/FullSimplify.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_fullsimplify, organization={Wolfram Research}, title={FullSimplify}, year={2025}, url={https://reference.wolfram.com/language/ref/FullSimplify.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English