Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
GeoPosition
  • See Also
    • GeoPositionENU
    • GeoPositionXYZ
    • GeoGridPosition
    • GeoDistance
    • GeoDestination
    • Latitude
    • Longitude
    • GeoAntipode
    • FindGeoLocation
    • $GeoLocation
    • GeodesyData
    • GeoVector
    • GeoGraphics
    • GeoPath
    • GeoCircle
    • GeoDisk
    • LocalTime

    • Entity Types
    • GeographicRegion

    • Interpreter Types
    • GeoCoordinates

    • Formats
    • USGSDEM
    • SDTSDEM
    • GeoTIFF
  • Related Guides
    • Geodesy
    • Geographic Data & Entities
    • Maps & Cartography
    • Weather Data
    • Free-Form & External Input
    • Locations, Paths, and Routing
    • Scientific Data Analysis
    • Angles and Polar Coordinates
    • Knowledge Representation & Access
    • Database Connectivity
    • WDF (Wolfram Data Framework)
  • Tech Notes
    • GeoGraphics
    • See Also
      • GeoPositionENU
      • GeoPositionXYZ
      • GeoGridPosition
      • GeoDistance
      • GeoDestination
      • Latitude
      • Longitude
      • GeoAntipode
      • FindGeoLocation
      • $GeoLocation
      • GeodesyData
      • GeoVector
      • GeoGraphics
      • GeoPath
      • GeoCircle
      • GeoDisk
      • LocalTime

      • Entity Types
      • GeographicRegion

      • Interpreter Types
      • GeoCoordinates

      • Formats
      • USGSDEM
      • SDTSDEM
      • GeoTIFF
    • Related Guides
      • Geodesy
      • Geographic Data & Entities
      • Maps & Cartography
      • Weather Data
      • Free-Form & External Input
      • Locations, Paths, and Routing
      • Scientific Data Analysis
      • Angles and Polar Coordinates
      • Knowledge Representation & Access
      • Database Connectivity
      • WDF (Wolfram Data Framework)
    • Tech Notes
      • GeoGraphics

GeoPosition[{lat,lon}]

represents a geodetic position with latitude lat and longitude lon.

GeoPosition[{lat,lon,h}]

represents a geodetic position with height h relative to the reference ellipsoid.

GeoPosition[{lat,lon,h},datum]

represents a geodetic position referring to the specified datum.

GeoPosition[{{lat1,lon1},{lat2,lon2},…},datum]

represents an array of geodetic positions.

GeoPosition[entity]

returns the geodetic position of the specified geographical entity.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Position Specification  
Geo Position Arrays  
Coordinate Extraction  
Datum Transformations  
Generalizations & Extensions  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • GeoPositionENU
    • GeoPositionXYZ
    • GeoGridPosition
    • GeoDistance
    • GeoDestination
    • Latitude
    • Longitude
    • GeoAntipode
    • FindGeoLocation
    • $GeoLocation
    • GeodesyData
    • GeoVector
    • GeoGraphics
    • GeoPath
    • GeoCircle
    • GeoDisk
    • LocalTime

    • Entity Types
    • GeographicRegion

    • Interpreter Types
    • GeoCoordinates

    • Formats
    • USGSDEM
    • SDTSDEM
    • GeoTIFF
  • Related Guides
    • Geodesy
    • Geographic Data & Entities
    • Maps & Cartography
    • Weather Data
    • Free-Form & External Input
    • Locations, Paths, and Routing
    • Scientific Data Analysis
    • Angles and Polar Coordinates
    • Knowledge Representation & Access
    • Database Connectivity
    • WDF (Wolfram Data Framework)
  • Tech Notes
    • GeoGraphics
    • See Also
      • GeoPositionENU
      • GeoPositionXYZ
      • GeoGridPosition
      • GeoDistance
      • GeoDestination
      • Latitude
      • Longitude
      • GeoAntipode
      • FindGeoLocation
      • $GeoLocation
      • GeodesyData
      • GeoVector
      • GeoGraphics
      • GeoPath
      • GeoCircle
      • GeoDisk
      • LocalTime

      • Entity Types
      • GeographicRegion

      • Interpreter Types
      • GeoCoordinates

      • Formats
      • USGSDEM
      • SDTSDEM
      • GeoTIFF
    • Related Guides
      • Geodesy
      • Geographic Data & Entities
      • Maps & Cartography
      • Weather Data
      • Free-Form & External Input
      • Locations, Paths, and Routing
      • Scientific Data Analysis
      • Angles and Polar Coordinates
      • Knowledge Representation & Access
      • Database Connectivity
      • WDF (Wolfram Data Framework)
    • Tech Notes
      • GeoGraphics

GeoPosition

GeoPosition[{lat,lon}]

represents a geodetic position with latitude lat and longitude lon.

GeoPosition[{lat,lon,h}]

represents a geodetic position with height h relative to the reference ellipsoid.

GeoPosition[{lat,lon,h},datum]

represents a geodetic position referring to the specified datum.

GeoPosition[{{lat1,lon1},{lat2,lon2},…},datum]

represents an array of geodetic positions.

GeoPosition[entity]

returns the geodetic position of the specified geographical entity.

Details

  • Latitude and longitude values in GeoPosition[{lat,lon}] can be given as decimal degrees, DMS strings, or Quantity angles.
  • Height h in GeoPosition[{lat,lon,h}] can be given as a numeric object in meters or as a Quantity length.
  • Height h in GeoPosition[{lat,lon,h}] is geodetic height, measured with respect to the reference ellipsoid.
  • GeoPosition[{lat,lon,h,t}] includes a time t that can be given as a numeric object or as a DateObject specification. A numeric t represents GMT time measured in seconds since the beginning of January 1, 1900.
  • Valid latitude angles range from to 90 degrees. Longitude angles, traditionally between and 180 degrees, are unrestricted and interpreted modulo 360 degrees.
  • A GeoPosition object with no explicit height assumes height zero with respect to the reference ellipsoid. A GeoPosition object with no explicit time assumes the current date.
  • GeoPosition[{lat,lon}] assumes the default datum "ITRF00".
  • Standard datums can be specified by name. Typical named datums include:
  • "ITRF00"International Terrestrial Reference Frame 2000
    "NAD27"North American Datum of 1927
    "NAD83CORS96"North American Datum of 1983 (CORS96)
  • The complete list of named datums and reference ellipsoids is given by GeodesyData[].
  • GeoPosition[GeoPosition[{lat,lon},datum1],datum2] converts between datums.
  • GeoPosition[pos,datum] converts from any type of geographic position. The following coordinate types can be given: GeoPosition, GeoPositionXYZ, GeoPositionENU, GeoGridPosition.
  • GeoPosition[pos] converts from any type of geographic position, keeping the same datum of pos.
  • GeoPosition can represent a geodetic position on a body other than Earth using GeoPosition[coords,body], where body is an Entity object of domains "Planet", "MinorPlanet", or "PlanetaryMoon".
  • For an image with Exif location information, GeoPosition[image] returns that information as a GeoPosition object.
  • For extended entities, GeoPosition[entity] uses when possible the position of the geographic center of the entity.
  • GeoPosition[…][prop] gives the specified property of a geo position.
  • Possible properties include:
  • "AbsoluteTime"date as number of seconds since Jan 1, 1900, 00:00 GMT
    "Count"number of positions in the GeoPosition object
    "Data"first argument of the GeoPosition object
    "DateList"date list {y,m,d,h,m,s} in GMT time
    "DateObject"full date object
    "Datum"datum of the GeoPosition object
    "Depth"point depth: 0 for a single position, 1 for a list of them, …
    "Dimension"number of coordinates for each position
    "Elevation"numeric elevation in meters, with respect to the ellipsoid
    "Latitude"numeric latitude in degrees
    "LatitudeLongitude"numeric {lat,lon} pair in degrees
    "Longitude"numeric longitude in degrees
    "LongitudeLatitude"numeric {lon,lat} pair in degrees
    "PackingType"Integer or Real if data is packed; None otherwise

Examples

open all close all

Basic Examples  (4)

A geodetic position in the default reference frame:

The geo location of a city:

The current position of the International Space Station, including height and time information:

A position that explicitly refers to the ITRF00 reference frame:

Convert this position to NAD 83 (CORS96) coordinates:

Convert to Cartesian geocentric coordinates:

Convert back to geodetic coordinates:

Convert back to ITRF00:

Scope  (19)

Position Specification  (9)

A geo position identified by values of latitude and longitude, respectively, both in degrees:

Specify height, in meters:

Specify time as well, in seconds since 1900:

Give an average location for a geographical entity:

Angles given as Quantity objects are converted into numeric angles, in degrees:

Heights and dates are also canonicalized to meters and seconds, respectively:

Input angles as DMS strings:

Write GeoPosition objects in DMS string form:

A GeoPosition object with no height information is assumed to have zero geodetic height:

A GeoPosition object with no time information is assumed to have the current date:

Extract Exif location information from an image:

A geo position that specifies its datum:

Transform to a different datum:

Transform to the original datum:

Height is modified in a change of datum, but not time:

Named locations:

These are the current locations of the magnetic poles, as determined by GeomagneticModelData:

Geo Position Arrays  (4)

To speed up computations, use an array of points as the first argument:

All points are transformed at once:

Here each point is transformed individually:

Results coincide up to numerical error:

Changes of datum are also faster using an array of points as the first argument:

GeoPosition can contain nested lists of points, as long as all points have the same length and depth:

Manipulations will preserve the nesting structure:

However, this is not allowed, because the first point has a height specification, but not the second:

This is not allowed because the second point is deeper than the first:

Convert a list of geo positions into a single geo position array:

Convert back to a list of geo positions:

Coordinate Extraction  (4)

Extract date information using DateValue:

Numeric time in GeoPosition is interpreted as GMT time. Convert to local time:

Extract the year as an integer number:

Extract the coordinates from a GeoPosition object:

Extract latitude, longitude or both, as Quantity angles:

Use properties to extract information from a GeoPosition object:

Use properties to extract information from a GeoPosition array:

There are 200 points:

It is a matrix of points, so it has point depth 2:

Each point has dimension 2, namely latitude and longitude:

RandomGeoPosition returns a GeoPosition object containing a packed array with type Real:

Any other property will return an array of values corresponding to the points of the array:

Datum Transformations  (2)

Perform a datum transformation from the default "ITRF00" to the British datum "OGB7" of 1936:

To estimate the implied spatial change, compute geo distance ignoring the datum information:

The change is smaller for locations in the UK:

Convert a geo position array of locations from the American "NAD27" datum to the European "EURM":

Extract the new coordinate values:

Generalizations & Extensions  (3)

Use positions on a sphere of 100 kilometers of radius:

Convert to a 3D vector:

The vector components are given in meters:

Transform back to a GeoPosition object on the sphere:

Use positions on an ellipsoid of given semiaxes:

Convert to a 3D vector:

Transform back to a GeoPosition object on the ellipsoid:

A position on a geo reference model other than the Earth:

Distance from the Tycho Brahe crater to the South Pole of Mars:

Computations are performed with an ellipsoid of these semiaxis lengths:

Applications  (3)

GeoPosition is the main object in the Wolfram Language denoting point-like locations on the Earth:

Compute distance between two points:

Compute the initial bearing of a geodesic from p to q:

Draw the geodesic between them and respective geo circles:

Check that the end of the geodesic starting at p is actually the point q:

Geographical locations returned by EntityValue are given as GeoPosition objects:

They can also include height and time information:

Geographical polygons have their coordinates inside a GeoPosition head:

Draw the polygon or its boundary:

Properties & Relations  (7)

Convert a geodetic location to a three-dimensional Cartesian vector with respect to the reference frame of the datum, assuming geodetic height 0:

Convert back to a GeoPosition specification, now with some small residual value of height:

Convert geodetic coordinates to Cartesian coordinates for an ellipsoid of these semiaxis lengths:

Take a point p of geodetic latitude 60°, zero longitude, and geodetic height 0.15:

Convert it to Cartesian coordinates:

Convert back to geodetic coordinates:

Take a point q of the same latitude and longitude, but zero height:

Represent the relation between the coordinates on a vertical cut of the ellipsoid:

The blue line is perpendicular to the tangent at q and forms an angle of 60° with the axis:

The geodetic height of p along the geodetic vertical is the distance between p and q:

Project a geodetic location using various geo projections, using their default parameters:

Convert back to a GeoPosition specification:

The antipode of a GeoPosition object is another GeoPosition object:

GeoPosition[{}] represents an empty array of geo positions:

It contains zero positions:

GeoPosition[] is invalid syntax:

GeoPosition inside Graphics primitives marks coordinates as being in {lat,lon} notation:

Graphics primitives containing GeoPosition coordinates are formed by straight segments in the projected map:

Possible Issues  (2)

Degree is considered as any other numeric expression:

Use Quantity to denote that angles are given in radians:

From Version 10 of the Wolfram Language, numeric time is interpreted as seconds since 1900, not as years:

Neat Examples  (1)

Take a list of images with Exif location information:

Extract their respective positions:

Draw the points on a map, using tooltips to show the respective images:

See Also

GeoPositionENU  GeoPositionXYZ  GeoGridPosition  GeoDistance  GeoDestination  Latitude  Longitude  GeoAntipode  FindGeoLocation  $GeoLocation  GeodesyData  GeoVector  GeoGraphics  GeoPath  GeoCircle  GeoDisk  LocalTime

Entity Types: GeographicRegion

Interpreter Types: GeoCoordinates

Formats: USGSDEM  SDTSDEM  GeoTIFF

Function Repository: ElevateGeoPosition

Tech Notes

    ▪
  • GeoGraphics

Related Guides

    ▪
  • Geodesy
  • ▪
  • Geographic Data & Entities
  • ▪
  • Maps & Cartography
  • ▪
  • Weather Data
  • ▪
  • Free-Form & External Input
  • ▪
  • Locations, Paths, and Routing
  • ▪
  • Scientific Data Analysis
  • ▪
  • Angles and Polar Coordinates
  • ▪
  • Knowledge Representation & Access
  • ▪
  • Database Connectivity
  • ▪
  • WDF (Wolfram Data Framework)

Related Links

  • An Elementary Introduction to the Wolfram Language : Geocomputation

History

Introduced in 2008 (7.0) | Updated in 2014 (10.0) ▪ 2019 (12.0)

Wolfram Research (2008), GeoPosition, Wolfram Language function, https://reference.wolfram.com/language/ref/GeoPosition.html (updated 2019).

Text

Wolfram Research (2008), GeoPosition, Wolfram Language function, https://reference.wolfram.com/language/ref/GeoPosition.html (updated 2019).

CMS

Wolfram Language. 2008. "GeoPosition." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/GeoPosition.html.

APA

Wolfram Language. (2008). GeoPosition. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GeoPosition.html

BibTeX

@misc{reference.wolfram_2025_geoposition, author="Wolfram Research", title="{GeoPosition}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/GeoPosition.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_geoposition, organization={Wolfram Research}, title={GeoPosition}, year={2019}, url={https://reference.wolfram.com/language/ref/GeoPosition.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English