Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
ProbabilityDistribution
  • See Also
    • Probability
    • Expectation
    • PDF
    • CDF
    • TransformedDistribution
    • OrderDistribution
    • CopulaDistribution
  • Related Guides
    • Random Variables
    • See Also
      • Probability
      • Expectation
      • PDF
      • CDF
      • TransformedDistribution
      • OrderDistribution
      • CopulaDistribution
    • Related Guides
      • Random Variables

ProbabilityDistribution[pdf,{x,xmin,xmax}]

represents the continuous distribution with PDF pdf in the variable x where the pdf is taken to be zero for and .

ProbabilityDistribution[pdf,{x,xmin,xmax,1}]

represents the discrete distribution with PDF pdf in the variable x where the pdf is taken to be zero for and .

ProbabilityDistribution[pdf,{x,…},{y,…},…]

represents a multivariate distribution with PDF pdf in the variables x, y, …, etc.

ProbabilityDistribution[{"CDF",cdf},…]

represents a probability distribution with CDF given by cdf.

ProbabilityDistribution[{"SF",sf},…]

represents a probability distribution with survival function given by sf.

ProbabilityDistribution[{"HF",hf},…]

represents a probability distribution with hazard function given by hf.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Distribution Specification  
Continuous Univariate Distributions  
Discrete Univariate Distributions  
Continuous Multivariate Distributions  
Discrete Multivariate Distributions  
Options  
Assumptions  
Method  
Applications  
Properties & Relations  
Possible Issues  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • Probability
    • Expectation
    • PDF
    • CDF
    • TransformedDistribution
    • OrderDistribution
    • CopulaDistribution
  • Related Guides
    • Random Variables
    • See Also
      • Probability
      • Expectation
      • PDF
      • CDF
      • TransformedDistribution
      • OrderDistribution
      • CopulaDistribution
    • Related Guides
      • Random Variables

ProbabilityDistribution

ProbabilityDistribution[pdf,{x,xmin,xmax}]

represents the continuous distribution with PDF pdf in the variable x where the pdf is taken to be zero for and .

ProbabilityDistribution[pdf,{x,xmin,xmax,1}]

represents the discrete distribution with PDF pdf in the variable x where the pdf is taken to be zero for and .

ProbabilityDistribution[pdf,{x,…},{y,…},…]

represents a multivariate distribution with PDF pdf in the variables x, y, …, etc.

ProbabilityDistribution[{"CDF",cdf},…]

represents a probability distribution with CDF given by cdf.

ProbabilityDistribution[{"SF",sf},…]

represents a probability distribution with survival function given by sf.

ProbabilityDistribution[{"HF",hf},…]

represents a probability distribution with hazard function given by hf.

Details and Options

  • ProbabilityDistribution is used to define a custom parametric distribution using one of the distribution functions.
  • For a multivariate ProbabilityDistribution definition, all variables need to be either discrete or continuous; no mixed cases can occur.
  • ProbabilityDistribution[pdf,…] is equivalent to ProbabilityDistribution[{"PDF", pdf},…].
  • ProbabilityDistribution takes the following options:
  • Assumptions Trueassumptions on parameters
    Method Automaticmethod to use
  • ProbabilityDistribution[…,Assumptions->assum] specifies the assumptions assum for parameters in the distribution function or domain specification. »
  • The probability density function pdf in the definition of ProbabilityDistribution is assumed to be valid. In particular, it is assumed that it has been normalized to unity.
  • The pdf can be normalized by setting Method->"Normalize" while defining a ProbabilityDistribution. »
  • ProbabilityDistribution can be used with such functions as Mean, CDF, RandomVariate, etc.

Examples

open all close all

Basic Examples  (1)

Define a continuous probability distribution:

Probability density function:

Cumulative distribution function:

The mean and variance:

Scope  (13)

Distribution Specification  (8)

Define a univariate continuous probability distribution:

Probability density function:

Define a univariate discrete probability distribution:

Cumulative distribution function:

Define a multivariate continuous distribution:

Verify that the integral of the PDF over the domain of the distribution is 1:

Define a multivariate discrete distribution:

Compute the expectation for an expression in this distribution:

Formula distribution specified by its CDF:

Mean and variance for the distribution:

Formula distribution specified by its survival function:

Kurtosis for the distribution:

Compare with the value obtained by using a random sample from the distribution:

Define probability distribution by its hazard function:

Compute survival probability:

Specify assumptions on a parameter in the definition of a formula distribution:

Probability density function:

Verify that the integral of the PDF is 1 under the given assumptions:

Continuous Univariate Distributions  (2)

Define a two-sided exponential distribution:

Probability density function:

Cumulative distribution function:

Quantile function:

Moments:

Define a distribution with PDF given in terms of DiracDelta:

Cumulative distribution function:

Quantile function:

Discrete Univariate Distributions  (1)

A discrete distribution with hypergeometric term PDF:

Probability density function:

Cumulative distribution function:

Mean and variance:

Continuous Multivariate Distributions  (1)

A bivariate triangular distribution:

Probability density function:

Cumulative distribution function:

Mean and variance:

Discrete Multivariate Distributions  (1)

A discrete bivariate rectangular distribution:

Probability density function:

Cumulative distribution function:

Mean and variance:

Options  (2)

Assumptions  (1)

Specify assumptions:

Method  (1)

Normalize a continuous probability distribution:

Verify that the PDF of the distribution is normalized to unity:

Normalize a multivariate probability distribution:

Verify:

Applications  (14)

Define a continuous univariate distribution using its probability density function:

Obtain the cumulative distribution function for this distribution:

Study the statistical properties of the distribution:

Find the probability of an event:

Compute a conditional expectation:

Compute the probability that a random variable is within one standard deviation from the mean:

Probability of being within two standard deviations from the mean:

Package it up as a function using NProbability:

Estimate the value of a parameter in ProbabilityDistribution:

Muth distribution is related to GompertzMakehamDistribution and has a PDF:

However, the third parameter of a GompertzMakehamDistribution is required to be positive:

Define a new distribution:

Probability density function:

Hazard function:

A double-sided power distribution is used in economics:

Probability density function:

Skewness:

Kurtosis:

Moment ratio diagram:

Create a uniform distribution over the unit disk:

Find each MarginalDistribution:

If dist is the joint distribution of the vector {x,y}, then x and y are not independent:

In a reliability study the CDF for the lifetime distribution is given by with and . What is the mean time to failure (MTTF) for the system? MTTF is also known as the mean:

Hence the mean time to failure is:

Change point distribution is characterized by a two-value hazard function:

Hazard function:

The probability density function is discontinuous at :

The limiting case is ExponentialDistribution:

The second limit:

Define a joint probability density function for two variables and :

Determine the value of the normalization factor :

The joint probability distribution is given by:

Compute the probability of an event in this distribution:

Obtain the numerical value of the probability directly:

The waiting times for buying tickets and for buying popcorn at a movie theater are independent and both follow an exponential distribution. The average waiting time for buying a ticket is 10 minutes and the average waiting time for buying popcorn is 5 minutes. Find the probability that a moviegoer waits for a total of less than 25 minutes before taking his or her seat:

Obtain the numerical value of the probability directly:

A factory produces cylindrically shaped roller bearings. The diameters of the bearings are normally distributed with mean 5 cm and standard deviation 0.01 cm. The lengths of the bearings are normally distributed with mean 7 cm and standard deviation 0.01 cm. Assuming that the diameter and the length are independently distributed, find the probability that a bearing has either diameter or length that differs from the mean by more than 0.02 cm:

Define the distribution corresponding to an electron's radial density in a hydrogen atom:

Generate random numbers from an instance of this distribution:

Compare a sample histogram to the distribution density plot:

Find the mean radius and its standard deviation:

Define a joint probability distribution on a square:

Each marginal distribution is the uniform distribution on the interval from to :

Verify that random variate is equal in distribution to the sum of independent uniforms, using characteristic functions:

This is equal to the product of characteristic functions of marginals, i.e. :

This is possible because and are uncorrelated, albeit dependent:

Compute properties for the slice distribution at time of an inhomogeneous Poisson process with intensity function :

The mean is the integral of the intensity function up to time :

Compare to the continuous time version of the process:

Properties & Relations  (3)

The first argument of ProbabilityDistribution is the PDF by default:

The integral of the PDF over the distribution domain needs to be unity:

ProbabilityDistribution decomposes into absolutely continuous and discrete parts:

PDF can be given as InterpolatingFunction:

Possible Issues  (5)

Probability density function used to define the distribution is assumed to be valid:

The specified PDF is invalid since it is not non-negative and not normalized to 1:

Sampling from this distribution may generate variates outside the distribution domain:

The PDF of this distribution is not normalized to unity:

Normalize the distribution:

Automatically normalize:

Normalization will not change the sign of the PDF:

Normalization will not be meaningful when the integral is not defined:

Use TransformedDistribution to create a discrete probability distribution with noninteger support:

See Also

Probability  Expectation  PDF  CDF  TransformedDistribution  OrderDistribution  CopulaDistribution

Function Repository: ChoquetIntegral  MetropolisHastingsSequence  KullbackLeiblerDivergence

Related Guides

    ▪
  • Random Variables

History

Introduced in 2010 (8.0) | Updated in 2014 (10.0) ▪ 2015 (10.2)

Wolfram Research (2010), ProbabilityDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/ProbabilityDistribution.html (updated 2015).

Text

Wolfram Research (2010), ProbabilityDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/ProbabilityDistribution.html (updated 2015).

CMS

Wolfram Language. 2010. "ProbabilityDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/ProbabilityDistribution.html.

APA

Wolfram Language. (2010). ProbabilityDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ProbabilityDistribution.html

BibTeX

@misc{reference.wolfram_2025_probabilitydistribution, author="Wolfram Research", title="{ProbabilityDistribution}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/ProbabilityDistribution.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_probabilitydistribution, organization={Wolfram Research}, title={ProbabilityDistribution}, year={2015}, url={https://reference.wolfram.com/language/ref/ProbabilityDistribution.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English