Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
TimeSeries
  • See Also
    • TimeSeriesModelFit
    • TemporalData
    • EventSeries
    • MovingMap
    • RandomFunction
    • CorrelationFunction
    • EstimatedProcess
    • ListLinePlot
    • DateListPlot
    • TimelinePlot
    • DateHistogram
    • EventData
    • WeightedData
  • Related Guides
    • Time Series Processing
    • Date & Time
    • Using the Wolfram Data Drop
    • Weather Data
    • Socioeconomic & Demographic Data
    • WDF (Wolfram Data Framework)
    • Descriptive Statistics
    • Scientific Data Analysis
    • See Also
      • TimeSeriesModelFit
      • TemporalData
      • EventSeries
      • MovingMap
      • RandomFunction
      • CorrelationFunction
      • EstimatedProcess
      • ListLinePlot
      • DateListPlot
      • TimelinePlot
      • DateHistogram
      • EventData
      • WeightedData
    • Related Guides
      • Time Series Processing
      • Date & Time
      • Using the Wolfram Data Drop
      • Weather Data
      • Socioeconomic & Demographic Data
      • WDF (Wolfram Data Framework)
      • Descriptive Statistics
      • Scientific Data Analysis

TimeSeries[{{t1,v1},{t2,v2}…}]

represents a time series specified by time-value pairs {ti,vi}.

TimeSeries[{v1,v2,…},tspec]

represents a time series with values vi at times specified by tspec.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Basic Uses  
Creating a Time Series  
Extracting Properties and Values  
Time Series Arithmetic  
Options  
CalendarType  
DateFunction  
HolidayCalendar  
Show More Show More
MetaInformation  
MissingDataMethod  
ResamplingMethod  
TemporalRegularity  
TimeZone  
ValueDimensions  
Applications  
Astronomy  
Demographics  
Finance  
Show More Show More
Weather  
Energy  
Meteorology  
Devices  
Filtering  
Sales  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Related Guides
Related Links
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • TimeSeriesModelFit
    • TemporalData
    • EventSeries
    • MovingMap
    • RandomFunction
    • CorrelationFunction
    • EstimatedProcess
    • ListLinePlot
    • DateListPlot
    • TimelinePlot
    • DateHistogram
    • EventData
    • WeightedData
  • Related Guides
    • Time Series Processing
    • Date & Time
    • Using the Wolfram Data Drop
    • Weather Data
    • Socioeconomic & Demographic Data
    • WDF (Wolfram Data Framework)
    • Descriptive Statistics
    • Scientific Data Analysis
    • See Also
      • TimeSeriesModelFit
      • TemporalData
      • EventSeries
      • MovingMap
      • RandomFunction
      • CorrelationFunction
      • EstimatedProcess
      • ListLinePlot
      • DateListPlot
      • TimelinePlot
      • DateHistogram
      • EventData
      • WeightedData
    • Related Guides
      • Time Series Processing
      • Date & Time
      • Using the Wolfram Data Drop
      • Weather Data
      • Socioeconomic & Demographic Data
      • WDF (Wolfram Data Framework)
      • Descriptive Statistics
      • Scientific Data Analysis

TimeSeries

TimeSeries[{{t1,v1},{t2,v2}…}]

represents a time series specified by time-value pairs {ti,vi}.

TimeSeries[{v1,v2,…},tspec]

represents a time series with values vi at times specified by tspec.

Details and Options

  • TimeSeries represents a series of time-value pairs {ti,vi}.
  • The values vi can be scalars or arrays of any dimension, but must all be of equal dimensionality.
  • The following times tspec can be given:
  • Automaticuse uniformly spaced times starting at 0
    {tmin}use uniformly spaced times starting at tmin
    {tmin,tmax}use uniformly spaced times tmin to tmax
    {tmin,tmax,dt}use times tmin to tmax in steps of dt
    {{t1,t2,…}}use explicit times {t1,t2,…}
  • The ti can be numbers or any valid input to AbsoluteTime.
  • The values tmin, tmax, and dt can be given as numbers, dates, or Automatic.
  • Specifying ts[t] gives the value of the time series at time t.
  • TimeSeries is a special case of TemporalData allowing only a single path and always interpolating between the time stamps.
  • TimeSeries objects of equal dimensionality {ts1,ts2,…} can be combined into a TemporalData object using TemporalData[{ts1,ts2,…}].
  • Properties of a TimeSeries object ts can be obtained from ts["property"].
  • A list of available properties can be obtained using ts["Properties"].
  • Some properties of the time series include:
  • "Path"time-value pairs {{t1,v1},…}
    "PathComponents"split the multivariate path into univariate components
    "PathFunction"an interpolated path function
    "PathLength"the length of the path
    "Values"the values {v1,…}
    "ValueDimensions"the dimensionality of the vi
    "Times"the times {t1,…}
    "Dates"the times {t1,…} as dates
    "DatePath"date-value pairs {{date1,v1},…}
    "FirstTime"the first time t1
    "FirstDate"the first time t1 as date
    "LastTime"the last time
    "LastDate"the last time as date
    "FirstValue"the value v1 at the first time
    "LastValue"the value at the last time
  • Specifying ts["PathComponent",p] gives the TimeSeries for vector components of the values specified by p.
  • If dates are given as input, ts["Times"] returns them in AbsoluteTime.
  • Normal[ts] is equivalent to ts["Path"].
  • TimeSeries takes the following options:
  • CalendarType "Gregorian"the calendar type to use
    HolidayCalendar {"UnitedStates","Default"}the holiday calendar to use
    TimeZone $TimeZonethe time zone to use
    MetaInformation Noneinclude additional metainformation
    MissingDataMethod Nonemethod to use for missing values
    ResamplingMethod "Interpolation"the method to use for resampling paths
    TemporalRegularity Automaticwhether to assume the data is regular
    DateFunction Automatichow to convert dates to standard form
    ValueDimensions Automaticthe dimensions of the values
  • By default, first-order interpolation is used for resampling. The setting ResamplingMethod->{"Interpolation",opts} can be given, where opts are options passed to Interpolation.
  • Setting the MissingDataMethod->Automatic will automatically interpolate values with head Missing according to the ResamplingMethod setting. By default, values with head Missing are treated as missing.
  • The setting ValueDimensions->dim specifies that the values vij are of dimension dim. Setting ValueDimensions->Automatic attempts to automatically determine the dimension of the values from the data.

Examples

open all close all

Basic Examples  (2)

Create a time series from some values and times:

Visualize the path:

Use dates as time stamps:

Plot the time series with DateListPlot:

The value of the stock on May 24, 2009:

The average value of the stock over the date range:

Scope  (33)

Basic Uses  (10)

Visualize a time series:

Use TimeSeriesWindow to extract a portion of a time series:

Use TimeSeriesInsert to replace a missing value:

Use TimeSeriesRescale to rescale a time series to run from 0 to 20:

Use TimeSeriesShift to shift the series ahead by 2:

Square the values in a time series:

Use TimeSeriesMap to find the sums of the components of a vector-valued time series:

Find the Mean of a time series:

The mean depends only on the values:

Compute a weighted mean:

Compute a MovingAverage for a time series:

Use MovingMap to compute a moving maximum:

Use TimeSeriesAggregate to compute the weekly totals for a time series:

Fit a parametric model to a time series using TimeSeriesModelFit:

Use TimeSeriesForecast to forecast the next 10 values in the time series:

Plot the time series along with the forecast:

Use TimeSeriesThread to compute the differences between two time series:

Creating a Time Series  (14)

Give a list of values with Automatic time stamps:

Create a time series starting at :

Use dates for starting times:

Dates can be given as any valid input to AbsoluteTime:

Use equally spaced times from 10 to 50:

Give a range of dates to use:

Specify an Automatic endpoint:

Create a series with times 1 to 20 in steps of 2:

Use an Automatic endpoint and fixed step:

Extract the computed last date:

Use an Automatic start point and given frequency:

Extract the computed first time:

Explicitly specify the times to use:

Give an explicit list of dates:

Give the time-value pairs:

Create a time series from date-value pairs:

Create a time series from data involving quantities:

Extracting Properties and Values  (5)

Obtain a list of available properties:

Values used for the time series:

Times:

Time-value pairs:

Plot the time series:

Represent the time series as a function:

The path function:

Extract components of vector-valued collection:

The first component:

Obtain the second component:

Plot the paths components:

Resample data over a given set of times:

Upsample the original path in steps of 0.25:

The new data is sampled from the path function:

Time series involving quantities:

The values are given as QuantityArray:

Extract quantity unit information:

Extract quantity magnitudes:

Time Series Arithmetic  (4)

Numerical, listable functions automatically thread over values of time series:

Compare to the result of TimeSeriesMap:

Combining several time series with identical time stamps threads over values:

Time series are resampled at the union of time stamps in the intersection of their supports:

The intersection of supports is , and the union of the time stamps within is :

Compare the result with adding the resampled time series:

Create a new time series of quantity magnitudes from existing time series involving quantities:

Create a new time series of quantity units:

Options  (12)

CalendarType  (1)

Specify time stamps as dates in a specific calendar using CalendarType:

By default, the "Gregorian" calendar is being used:

Specify input dates in "Gregorian" calendar but display in "Jewish" calendar:

DateFunction  (2)

Use DateList to define functions for interpreting ambiguous date strings:

Use DateObject to define functions for interpreting ambiguous date strings:

Specify the TimeZone of the inputs:

HolidayCalendar  (1)

Use HolidayCalendar to visualize business days in a given country:

MetaInformation  (3)

Include additional meta-information as a list of rules:

The properties now include the meta-information "Stock":

The added meta-information can be used like any other property:

Use MetaInformation to specify PlotLegends:

See the available MetaInformation:

Access specific information directly:

Visualize the data:

Use MetaInformation to name the components in a vector-valued TimeSeries:

Extract second component:

Extract first and third components using either their name or number:

MissingDataMethod  (1)

By default, values with head Missing are interpreted as missing:

Use MissingDataMethod to replace missing values with a constant:

Use interpolation to replace the missing values:

The default method is interpolation of order 1:

ResamplingMethod  (1)

By default, values at intermediate times are computed using first-order interpolation:

Use ResamplingMethod to assign a constant value at intermediate times:

Use zero-order interpolation:

TemporalRegularity  (1)

Explicitly assume that temporal data is regularly spaced:

TimeZone  (1)

Specify the time zone of TimeSeries:

The time stamps were created in $TimeZone, but the dates are displayed in the time zone specified by the option:

ValueDimensions  (1)

Specify the dimensionality of the values:

Applications  (13)

Astronomy  (2)

Use SunPosition to generate the Sun's position in Chicago for a range of dates:

Plot the variation of the azimuth and the altitude for this period:

Use MoonPosition to generate the Moon's position for a range of dates:

Verify that the Moon's orbit is tilted with respect to the Earth's equator:

Demographics  (1)

Use CountryData to generate the GDP for UK and Germany:

Compare the GDP of these two countries:

Finance  (1)

Forecast stock prices:

Fit an ARIMA process:

Forecast to the next half a year:

Weather  (1)

Average temperature on the first day of a month in Chicago, IL:

Fit a SARIMA process:

Forecast the average temperatures on the first day of a month for the next three years:

Energy  (1)

Use NuclearReactorData to visualize energy production for the Chernobyl reactors:

Meteorology  (2)

Use AirPressureData to examine pressure reading drops due to Hurricane Sandy at Long Island MacArthur Airport:

Use WindSpeedData to compare the wind speeds at John F. Kennedy Airport during summer and winter:

Devices  (2)

Capture a 10-second time series at 0.05-second intervals:

Plot the time series along with a moving average:

The following time series is generated by reading illuminance data from a TinkerForge Weather Station every 0.1 second for 5 seconds while continuously changing the device orientation:

Plot the illuminance values:

Min, Mean, and Max for the data:

Generate illuminance data by alternately switching the ambient light source on and off:

A plot of the time series reveals the approximate periodic nature of the data:

Verify the periodicity using Fourier:

Filtering  (1)

Use MeanFilter to filter a time series:

Sales  (2)

The following data represents annual sales for a small software company for 11 years:

Use LinearModelFit to fit a linear model to this data:

Plot the original data along with the values obtained using the linear model:

Apply exponential smoothing with weight 0.45 to the data:

Plot the original data along with the values obtained using exponential smoothing:

Fit a parametric model to retail sales data for the US between 1992 and 2015:

Construct a time series model for the data using TimeSeriesModelFit:

Use the model to forecast the next three months:

Properties & Relations  (4)

TimeSeries interpolates the values between time stamps:

Use EventSeries to represent discrete times:

Both agree on time stamps:

However, EventSeries does not interpolate the values between time stamps:

You can convert from one to the other:

TimeSeries can contain a single path only:

The time series has only one path:

Create individual TimeSeries for each row of data:

Compare to the first row of the data:

Use TemporalData to contain multiple paths:

TimeSeries at a point returns a value or interpolates:

Evaluating at a time stamp and in between time stamps:

Use TemporalData to store multiple paths and obtain distribution of the values at a point:

Evaluating at a time stamp and in between time stamps:

TimeSeries at a time outside the time domain extrapolates:

The warning message is not being issued by default but can be turned on:

Turn the message off:

Possible Issues  (6)

Multidimensional data may be confused with time-value pairs:

Specify ValueDimensions to treat the data as vector-valued:

Accumulating irregularly sampled time series:

Accumulate will resample to create regularly sampled time series:

Compare with accumulated values:

To recover that behavior, assume TemporalRegularity:

TimeSeries always interpolates between the time stamps:

To still have Missing between time stamps, use it as the value:

If the ResamplingMethod specification is not an implemented one, it will assume the value Automatic:

Component names must be strings:

Path component names must be non-empty strings:

Time series with repeated component names:

For a repeated name, only the first component will be repeatedly extracted:

Use an index to access the next components with the same name:

Neat Examples  (2)

Generate the analemma of the Sun (Sun's position at 9am in 10-day increments):

Animate the movement of the continental plates during the Mesozoic Era:

See Also

TimeSeriesModelFit  TemporalData  EventSeries  MovingMap  RandomFunction  CorrelationFunction  EstimatedProcess  ListLinePlot  DateListPlot  TimelinePlot  DateHistogram  EventData  WeightedData

Function Repository: ConformTimeSeries

Related Guides

    ▪
  • Time Series Processing
  • ▪
  • Date & Time
  • ▪
  • Using the Wolfram Data Drop
  • ▪
  • Weather Data
  • ▪
  • Socioeconomic & Demographic Data
  • ▪
  • WDF (Wolfram Data Framework)
  • ▪
  • Descriptive Statistics
  • ▪
  • Scientific Data Analysis

Related Links

  • An Elementary Introduction to the Wolfram Language : Dates and Times

History

Introduced in 2014 (10.0) | Updated in 2015 (10.1)

Wolfram Research (2014), TimeSeries, Wolfram Language function, https://reference.wolfram.com/language/ref/TimeSeries.html (updated 2015).

Text

Wolfram Research (2014), TimeSeries, Wolfram Language function, https://reference.wolfram.com/language/ref/TimeSeries.html (updated 2015).

CMS

Wolfram Language. 2014. "TimeSeries." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/TimeSeries.html.

APA

Wolfram Language. (2014). TimeSeries. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TimeSeries.html

BibTeX

@misc{reference.wolfram_2025_timeseries, author="Wolfram Research", title="{TimeSeries}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/TimeSeries.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_timeseries, organization={Wolfram Research}, title={TimeSeries}, year={2015}, url={https://reference.wolfram.com/language/ref/TimeSeries.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English