إنشاء صور باستخدام Gemini


يمكنك أن تطلب من نموذج Gemini إنشاء صور وتعديلها باستخدام طلبات نصية فقط وطلبات نصية وصور. عند استخدام Firebase AI Logic، يمكنك تقديم هذا الطلب مباشرةً من تطبيقك.

باستخدام هذه الميزة، يمكنك تنفيذ إجراءات، مثل:

  • إنشاء صور بشكل متكرّر من خلال محادثة بلغة طبيعية، وتعديل الصور مع الحفاظ على الاتساق و��ل��يا��

  • إنشاء صور ��ت��مّن نصًا بجودة عالية، بما في ذلك سلاسل طويلة من النص

  • إنشاء إخراج نصي مُتداخل مع الصور على سبيل المثال، مشاركة مدونة تحتوي على نص و صور في خطوة واحدة في السابق، كان هذا يتطلّب تجميع نماذج متعدّدة معًا.

  • إنشاء صور باستخدام معلومات Gemini حول العالم وقدراته على التفكير

يمكنك العثور على قائمة كاملة بالوضعيات والإمكانات المتوافقة (بالإضافة إلى أمثلة على طلبات المساعدة) في هذه الصفحة.

لإخراج الصور، يجب استخدام Gemini gemini-2.0-flash-preview-image-generation ويجب تضمين responseModalities: ["TEXT", "IMAGE"] في إعدادات النموذج.

الانتقال إلى رمز تحويل النص إلى صورة الانتقال إلى رمز النص والصور المتداخلَين

الانتقال إلى الرمز البرمجي لتعديل الصور الانتقال إلى الرمز البرمجي لتعديل الصور بشكل متكرّر


الاطّلاع على أدلة أخرى للحصول على خيارات إضافية للعمل مع الصور
تحليل الصور تحليل الصور على الجهاز إنشاء إخراج منظَّم

الاختيار بين النموذجَين Gemini وImagen

تتيح حِزم تطوير البرامج (SDK) Firebase AI Logic إنشاء الصور باستخدام نموذج Gemini أو Imagen. في معظم حالات الاستخدام، ابدأ باستخدامGemini، ثم اختَرImagen للمهام المتخصصة التي تتطلّب جودة الصورة العالية.

يُرجى العِلم أنّ حِزم SDK لنظام التشغيل Firebase AI Logic لا تتيح إدخال الصور (مثلاً لتعديلها) باستخدام طُرز Imagen. لذلك، إذا كنت تريد العمل مع صور الإدخال، يمكنك استخدام نموذج Gemini بدلاً من ذلك.

اختَر Gemini عندما تريد:

  • لاستخدام المعرفة بالواقع والتفكير المنطقي لإنشاء صور ذات صلة بالسياق
  • لدمج النصوص والصور بسلاسة
  • لتضمين مرئيات دقيقة ضمن تسلسلات نصية طويلة
  • لتعديل الصور بشكل تفاعلي مع الحفاظ على السياق

اختَر Imagen عندما تريد:

  • لإعطاء الأولوية لجودة الصورة أو الواقعية التصويرية أو التفاصيل الفنية أو أنماط معيّنة (مثل الانطباعية أو الرسوم المتحركة)
  • لتحديد نسبة العرض إلى الارتفاع أو تنسيق الصور التي يتم إنشاؤها بشكل صريح

قبل البدء

انقر على مزوّد Gemini API لعرض المحتوى الخاص بالمزوّد والرمز البرمجي في هذه الصفحة.

إذا لم يسبق لك ذلك، أكمِل قراءة دليل البدء الذي يوضّح كيفية إعداد مشروعك على Firebase وربط تطبيقك بـ Firebase وإضافة حزمة تطوير البرامج (SDK) وبدء خدمة الخلفية لمزوّد Gemini API الذي اخترته، وإنشاء مثيل GenerativeModel.

لاختبار طلباتك وتكرارها وحتى الحصول على مقتطف رمز تم إنشاؤه، ننصحك باستخدام Google AI Studio.

الطُرز التي تتيح هذه الميزة

لا يمكن عرض الصور من Gemini إلا من خلال gemini-2.0-flash-preview-image-generation (وليس gemini-2.0-flash).

تجدر الإشارة إلى أنّ حِزم SDK تتيح أيضًا إنشاء الصور باستخدام نماذج Imagen.

إنشاء الصور وتعديلها

يمكنك إنشاء الصور وتعديلها باستخدام نموذج Gemini.

إنشاء صور (إدخال نص فقط)

قبل تجربة هذا العيّنة، عليك إكمال القسم قبل البدء من هذا الدليل لإعداد مشروعك وتطبيقك.
في هذا القسم، عليك أيضًا النقر على زر Gemini API مقدّم الخدمة الذي اخترته حتى يظهر لك المحتوى الخاص بالمقدّم في هذه الصفحة.

يمكنك أن تطلب من نموذج Gemini إنشاء صور من خلال تقديم نص.

احرص على إنشاء مثيل GenerativeModel، وتضمين responseModalities: ["TEXT", "IMAGE"] في إعدادات النموذج، واستدعاء generateContent.

Swift


import FirebaseAI

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [.text, .image])
)

// Provide a text prompt instructing the model to generate an image
let prompt = "Generate an image of the Eiffel tower with fireworks in the background."

// To generate an image, call `generateContent` with the text input
let response = try await model.generateContent(prompt)

// Handle the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
  fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
  fatalError("Failed to convert data to UIImage.")
}

Kotlin


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
    modelName = "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)

// Provide a text prompt instructing the model to generate an image
val prompt = "Generate an image of the Eiffel tower with fireworks in the background."

// To generate image output, call `generateContent` with the text input
val generatedImageAsBitmap = model.generateContent(prompt)
    // Handle the generated image
    .candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }

Java


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
    "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    new GenerationConfig.Builder()
        .setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
        .build()
);

GenerativeModelFutures model = GenerativeModelFutures.from(ai);

// Provide a text prompt instructing the model to generate an image
Content prompt = new Content.Builder()
        .addText("Generate an image of the Eiffel Tower with fireworks in the background.")
        .build();

// To generate an image, call `generateContent` with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) { 
        // iterate over all the parts in the first candidate in the result object
        for (Part part : result.getCandidates().get(0).getContent().getParts()) {
            if (part instanceof ImagePart) {
                ImagePart imagePart = (ImagePart) part;
                // The returned image as a bitmap
                Bitmap generatedImageAsBitmap = imagePart.getImage();
                break;
            }
        }
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
  model: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: {
    responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
  },
});

// Provide a text prompt instructing the model to generate an image
const prompt = 'Generate an image of the Eiffel Tower with fireworks in the background.';

// To generate an image, call `generateContent` with the text input
const result = model.generateContent(prompt);

// Handle the generated image
try {
  const inlineDataParts = result.response.inlineDataParts();
  if (inlineDataParts?.[0]) {
    const image = inlineDataParts[0].inlineData;
    console.log(image.mimeType, image.data);
  }
} catch (err) {
  console.error('Prompt or candidate was blocked:', err);
}

Dart


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
  model: 'gemini-2.0-flash-preview-image-generation',
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);

// Provide a text prompt instructing the model to generate an image
final prompt = [Content.text('Generate an image of the Eiffel Tower with fireworks in the background.')];

// To generate an image, call `generateContent` with the text input
final response = await model.generateContent(prompt);
if (response.inlineDataParts.isNotEmpty) {
  final imageBytes = response.inlineDataParts[0].bytes;
  // Process the image
} else {
  // Handle the case where no images were generated
  print('Error: No images were generated.');
}

Unity


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: new GenerationConfig(
    responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);

// Provide a text prompt instructing the model to generate an image
var prompt = "Generate an image of the Eiffel Tower with fireworks in the background.";

// To generate an image, call `GenerateContentAsync` with the text input
var response = await model.GenerateContentAsync(prompt);

var text = response.Text;
if (!string.IsNullOrWhiteSpace(text)) {
  // Do something with the text
}

// Handle the generated image
var imageParts = response.Candidates.First().Content.Parts
                         .OfType<ModelContent.InlineDataPart>()
                         .Where(part => part.MimeType == "image/png");
foreach (var imagePart in imageParts) {
  // Load the Image into a Unity Texture2D object
  UnityEngine.Texture2D texture2D = new(2, 2);
  if (texture2D.LoadImage(imagePart.Data.ToArray())) {
    // Do something with the image
  }
}

تعرَّف على كيفية اختيار نموذج مناسب لحالة الاستخدام والتطبيق.

لنجرّب إنشاء صور متداخلة مع نص

قبل تجربة هذا العيّنة، عليك إكمال القسم قبل البدء من هذا الدليل لإعداد مشروعك وتطبيقك.
في هذا القسم، عليك أيضًا النقر على زر Gemini API مقدّم الخدمة الذي اخترته حتى يظهر لك المحتوى الخاص بالمقدّم في هذه الصفحة.

يمكنك أن تطلب من نموذج Gemini إنشاء صور مُدرَجة مع ردود النص. على سبيل المثال، يمكنك إنشاء صور لكل خطوة من خطوات صفة طعام تم إنشاؤها مع تعليمات الخطوة، وبذلك لن تحتاج إلى تقديم طلبات منفصلة إلى النموذج أو نماذج مختلفة.

احرص على إنشاء مثيل GenerativeModel، وتضمين responseModalities: ["TEXT", "IMAGE"] في إعدادات النموذج، ثم استدعاء generateContent.

Swift


import FirebaseAI

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [.text, .image])
)

// Provide a text prompt instructing the model to generate interleaved text and images
let prompt = """
Generate an illustrated recipe for a paella.
Create images to go alongside the text as you generate the recipe
"""

// To generate interleaved text and images, call `generateContent` with the text input
let response = try await model.generateContent(prompt)

// Handle the generated text and image
guard let candidate = response.candidates.first else {
  fatalError("No candidates in response.")
}
for part in candidate.content.parts {
  switch part {
  case let textPart as TextPart:
    // Do something with the generated text
    let text = textPart.text
  case let inlineDataPart as InlineDataPart:
    // Do something with the generated image
    guard let uiImage = UIImage(data: inlineDataPart.data) else {
      fatalError("Failed to convert data to UIImage.")
    }
  default:
    fatalError("Unsupported part type: \(part)")
  }
}

Kotlin


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
    modelName = "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)

// Provide a text prompt instructing the model to generate interleaved text and images
val prompt = """
    Generate an illustrated recipe for a paella.
    Create images to go alongside the text as you generate the recipe
    """.trimIndent()

// To generate interleaved text and images, call `generateContent` with the text input
val responseContent = model.generateContent(prompt).candidates.first().content

// The response will contain image and text parts interleaved
for (part in responseContent.parts) {
    when (part) {
        is ImagePart -> {
            // ImagePart as a bitmap
            val generatedImageAsBitmap: Bitmap? = part.asImageOrNull()
        }
        is TextPart -> {
            // Text content from the TextPart
            val text = part.text
        }
    }
}

Java


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
    "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    new GenerationConfig.Builder()
        .setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
        .build()
);

GenerativeModelFutures model = GenerativeModelFutures.from(ai);

// Provide a text prompt instructing the model to generate interleaved text and images
Content prompt = new Content.Builder()
        .addText("Generate an illustrated recipe for a paella.\n" +
                 "Create images to go alongside the text as you generate the recipe")
        .build();

// To generate interleaved text and images, call `generateContent` with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        Content responseContent = result.getCandidates().get(0).getContent();
        // The response will contain image and text parts interleaved
        for (Part part : responseContent.getParts()) {
            if (part instanceof ImagePart) {
                // ImagePart as a bitmap
                Bitmap generatedImageAsBitmap = ((ImagePart) part).getImage();
            } else if (part instanceof TextPart){
                // Text content from the TextPart
                String text = ((TextPart) part).getText();
            }
        }
    }

    @Override
    public void onFailure(Throwable t) {
        System.err.println(t);
    }
}, executor);

Web


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
  model: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: {
    responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
  },
});

// Provide a text prompt instructing the model to generate interleaved text and images
const prompt = 'Generate an illustrated recipe for a paella.\n.' +
  'Create images to go alongside the text as you generate the recipe';

// To generate interleaved text and images, call `generateContent` with the text input
const result = await model.generateContent(prompt);

// Handle the generated text and image
try {
  const response = result.response;
  if (response.candidates?.[0].content?.parts) {
    for (const part of response.candidates?.[0].content?.parts) {
      if (part.text) {
        // Do something with the text
        console.log(part.text)
      }
      if (part.inlineData) {
        // Do something with the image
        const image = part.inlineData;
        console.log(image.mimeType, image.data);
      }
    }
  }

} catch (err) {
  console.error('Prompt or candidate was blocked:', err);
}

Dart


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
  model: 'gemini-2.0-flash-preview-image-generation',
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);

// Provide a text prompt instructing the model to generate interleaved text and images
final prompt = [Content.text(
  'Generate an illustrated recipe for a paella\n ' +
  'Create images to go alongside the text as you generate the recipe'
)];

// To generate interleaved text and images, call `generateContent` with the text input
final response = await model.generateContent(prompt);

// Handle the generated text and image
final parts = response.candidates.firstOrNull?.content.parts
if (parts.isNotEmpty) {
  for (final part in parts) {
    if (part is TextPart) {
      // Do something with text part
      final text = part.text
    }
    if (part is InlineDataPart) {
      // Process image
      final imageBytes = part.bytes
    }
  }
} else {
  // Handle the case where no images were generated
  print('Error: No images were generated.');
}

Unity


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: new GenerationConfig(
    responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);

// Provide a text prompt instructing the model to generate interleaved text and images
var prompt = "Generate an illustrated recipe for a paella \n" +
  "Create images to go alongside the text as you generate the recipe";

// To generate interleaved text and images, call `GenerateContentAsync` with the text input
var response = await model.GenerateContentAsync(prompt);

// Handle the generated text and image
foreach (var part in response.Candidates.First().Content.Parts) {
  if (part is ModelContent.TextPart textPart) {
    if (!string.IsNullOrWhiteSpace(textPart.Text)) {
      // Do something with the text
    }
  } else if (part is ModelContent.InlineDataPart dataPart) {
    if (dataPart.MimeType == "image/png") {
      // Load the Image into a Unity Texture2D object
      UnityEngine.Texture2D texture2D = new(2, 2);
      if (texture2D.LoadImage(dataPart.Data.ToArray())) {
        // Do something with the image
      }
    }
  }
}

تعرَّف على كيفية اختيار نموذج مناسب لحالة الاستخدام والتطبيق.

تعديل الصور (إدخال نص وصورة)

قبل تجربة هذا العيّنة، عليك إكمال القسم قبل البدء من هذا الدليل لإعداد مشروعك وتطبيقك.
في هذا القسم، عليك أيضًا النقر على زر Gemini API مقدّم الخدمة الذي اخترته حتى يظهر لك المحتوى الخاص بالمقدّم في هذه الصفحة.

يمكنك أن تطلب من نموذج Gemini تع��يل الصور من خلال إرسال نص و صورة واحدة أو أكثر.

احرص على إنشاء مثيل GenerativeModel، وتضمين responseModalities: ["TEXT", "IMAGE"] في إعدادات النموذج، واستدعاء generateContent.

Swift


import FirebaseAI

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [.text, .image])
)

// Provide an image for the model to edit
guard let image = UIImage(named: "scones") else { fatalError("Image file not found.") }

// Provide a text prompt instructing the model to edit the image
let prompt = "Edit this image to make it look like a cartoon"

// To edit the image, call `generateContent` with the image and text input
let response = try await model.generateContent(image, prompt)

// Handle the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
  fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
  fatalError("Failed to convert data to UIImage.")
}

Kotlin


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
    modelName = "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)

// Provide an image for the model to edit
val bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.scones)

// Provide a text prompt instructing the model to edit the image
val prompt = content {
    image(bitmap)
    text("Edit this image to make it look like a cartoon")
}

// To edit the image, call `generateContent` with the prompt (image and text input)
val generatedImageAsBitmap = model.generateContent(prompt)
    // Handle the generated text and image
    .candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }

Java


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
    "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    new GenerationConfig.Builder()
        .setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
        .build()
);

GenerativeModelFutures model = GenerativeModelFutures.from(ai);

// Provide an image for the model to edit
Bitmap bitmap = BitmapFactory.decodeResource(resources, R.drawable.scones);

// Provide a text prompt instructing the model to edit the image
Content promptcontent = new Content.Builder()
        .addImage(bitmap)
        .addText("Edit this image to make it look like a cartoon")
        .build();

// To edit the image, call `generateContent` with the prompt (image and text input)
ListenableFuture<GenerateContentResponse> response = model.generateContent(promptcontent);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        // iterate over all the parts in the first candidate in the result object
        for (Part part : result.getCandidates().get(0).getContent().getParts()) {
            if (part instanceof ImagePart) {
                ImagePart imagePart = (ImagePart) part;
                Bitmap generatedImageAsBitmap = imagePart.getImage();
                break;
            }
        }
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
  model: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: {
    responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
  },
});

// Prepare an image for the model to edit
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

// Provide a text prompt instructing the model to edit the image
const prompt = "Edit this image to make it look like a cartoon";

const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);

// To edit the image, call `generateContent` with the image and text input
const result = await model.generateContent([prompt, imagePart]);

// Handle the generated image
try {
  const inlineDataParts = result.response.inlineDataParts();
  if (inlineDataParts?.[0]) {
    const image = inlineDataParts[0].inlineData;
    console.log(image.mimeType, image.data);
  }
} catch (err) {
  console.error('Prompt or candidate was blocked:', err);
}

Dart


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
  model: 'gemini-2.0-flash-preview-image-generation',
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);

// Prepare an image for the model to edit
final image = await File('scones.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);

// Provide a text prompt instructing the model to edit the image
final prompt = TextPart("Edit this image to make it look like a cartoon");

// To edit the image, call `generateContent` with the image and text input
final response = await model.generateContent([
  Content.multi([prompt,imagePart])
]);

// Handle the generated image
if (response.inlineDataParts.isNotEmpty) {
  final imageBytes = response.inlineDataParts[0].bytes;
  // Process the image
} else {
  // Handle the case where no images were generated
  print('Error: No images were generated.');
}

Unity


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: new GenerationConfig(
    responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);

// Prepare an image for the model to edit
var imageFile = System.IO.File.ReadAllBytes(System.IO.Path.Combine(
  UnityEngine.Application.streamingAssetsPath, "scones.jpg"));
var image = ModelContent.InlineData("image/jpeg", imageFile);

// Provide a text prompt instructing the model to edit the image
var prompt = ModelContent.Text("Edit this image to make it look like a cartoon.");

// To edit the image, call `GenerateContent` with the image and text input
var response = await model.GenerateContentAsync(new [] { prompt, image });

var text = response.Text;
if (!string.IsNullOrWhiteSpace(text)) {
  // Do something with the text
}

// Handle the generated image
var imageParts = response.Candidates.First().Content.Parts
                         .OfType<ModelContent.InlineDataPart>()
                         .Where(part => part.MimeType == "image/png");
foreach (var imagePart in imageParts) {
  // Load the Image into a Unity Texture2D object
  Texture2D texture2D = new Texture2D(2, 2);
  if (texture2D.LoadImage(imagePart.Data.ToArray())) {
    // Do something with the image
  }
}

تعرَّف على كيفية اختيار نموذج مناسب لحالة الاستخدام والتطبيق.

تكرار الصور وتعديلها باستخدام المحادثات المتعدّدة الخطوات

قبل تجربة هذا العيّنة، عليك إكمال القسم قبل البدء من هذا الدليل لإعداد مشروعك وتطبيقك.
في هذا القسم، عليك أيضًا النقر على زر Gemini API مقدّم الخدمة الذي اخترته حتى يظهر لك المحتوى الخاص بالمقدّم في هذه الصفحة.

باستخدام المحادثة المتعدّدة المقاطع، يمكنك إجراء تكرار باستخدام نموذج Gemini على الصور التي ينشئها أو التي تقدّمها.

احرص على إنشاء مثيل GenerativeModel، وتضمين responseModalities: ["TEXT", "IMAGE"] في إعدادات النموذج، واستدعاء startChat() وsendMessage() لإرسال رسائل إلى المستخدمين الجدد.

Swift


import FirebaseAI

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [.text, .image])
)

// Initialize the chat
let chat = model.startChat()

guard let image = UIImage(named: "scones") else { fatalError("Image file not found.") }

// Provide an initial text prompt instructing the model to edit the image
let prompt = "Edit this image to make it look like a cartoon"

// To generate an initial response, send a user message with the image and text prompt
let response = try await chat.sendMessage(image, prompt)

// Inspect the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
  fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
  fatalError("Failed to convert data to UIImage.")
}

// Follow up requests do not need to specify the image again
let followUpResponse = try await chat.sendMessage("But make it old-school line drawing style")

// Inspect the edited image after the follow up request
guard let followUpInlineDataPart = followUpResponse.inlineDataParts.first else {
  fatalError("No image data in response.")
}
guard let followUpUIImage = UIImage(data: followUpInlineDataPart.data) else {
  fatalError("Failed to convert data to UIImage.")
}

Kotlin


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
    modelName = "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)

// Provide an image for the model to edit
val bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.scones)

// Create the initial prompt instructing the model to edit the image
val prompt = content {
    image(bitmap)
    text("Edit this image to make it look like a cartoon")
}

// Initialize the chat
val chat = model.startChat()

// To generate an initial response, send a user message with the image and text prompt
var response = chat.sendMessage(prompt)
// Inspect the returned image
var generatedImageAsBitmap = response
    .candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }

// Follow up requests do not need to specify the image again
response = chat.sendMessage("But make it old-school line drawing style")
generatedImageAsBitmap = response
    .candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }

Java


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
    "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    new GenerationConfig.Builder()
        .setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
        .build()
);

GenerativeModelFutures model = GenerativeModelFutures.from(ai);

// Provide an image for the model to edit
Bitmap bitmap = BitmapFactory.decodeResource(resources, R.drawable.scones);

// Initialize the chat
ChatFutures chat = model.startChat();

// Create the initial prompt instructing the model to edit the image
Content prompt = new Content.Builder()
        .setRole("user")
        .addImage(bitmap)
        .addText("Edit this image to make it look like a cartoon")
        .build();

// To generate an initial response, send a user message with the image and text prompt
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(prompt);
// Extract the image from the initial response
ListenableFuture<@Nullable Bitmap> initialRequest = Futures.transform(response, result -> {
    for (Part part : result.getCandidates().get(0).getContent().getParts()) {
        if (part instanceof ImagePart) {
            ImagePart imagePart = (ImagePart) part;
            return imagePart.getImage();
        }
    }
    return null;
}, executor);

// Follow up requests do not need to specify the image again
ListenableFuture<GenerateContentResponse> modelResponseFuture = Futures.transformAsync(
        initialRequest,
        generatedImage -> {
            Content followUpPrompt = new Content.Builder()
                    .addText("But make it old-school line drawing style")
                    .build();
            return chat.sendMessage(followUpPrompt);
        },
        executor);

// Add a final callback to check the reworked image
Futures.addCallback(modelResponseFuture, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        for (Part part : result.getCandidates().get(0).getContent().getParts()) {
            if (part instanceof ImagePart) {
                ImagePart imagePart = (ImagePart) part;
                Bitmap generatedImageAsBitmap = imagePart.getImage();
                break;
            }
        }
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
  model: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: {
    responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
  },
});

// Prepare an image for the model to edit
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);

// Provide an initial text prompt instructing the model to edit the image
const prompt = "Edit this image to make it look like a cartoon";

// Initialize the chat
const chat = model.startChat();

// To generate an initial response, send a user message with the image and text prompt
const result = await chat.sendMessage([prompt, imagePart]);

// Request and inspect the generated image
try {
  const inlineDataParts = result.response.inlineDataParts();
  if (inlineDataParts?.[0]) {
    // Inspect the generated image
    const image = inlineDataParts[0].inlineData;
    console.log(image.mimeType, image.data);
  }
} catch (err) {
  console.error('Prompt or candidate was blocked:', err);
}

// Follow up requests do not need to specify the image again
const followUpResult = await chat.sendMessage("But make it old-school line drawing style");

// Request and inspect the returned image
try {
  const followUpInlineDataParts = followUpResult.response.inlineDataParts();
  if (followUpInlineDataParts?.[0]) {
    // Inspect the generated image
    const followUpImage = followUpInlineDataParts[0].inlineData;
    console.log(followUpImage.mimeType, followUpImage.data);
  }
} catch (err) {
  console.error('Prompt or candidate was blocked:', err);
}

Dart


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
  model: 'gemini-2.0-flash-preview-image-generation',
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);

// Prepare an image for the model to edit
final image = await File('scones.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);

// Provide an initial text prompt instructing the model to edit the image
final prompt = TextPart("Edit this image to make it look like a cartoon");

// Initialize the chat
final chat = model.startChat();

// To generate an initial response, send a user message with the image and text prompt
final response = await chat.sendMessage([
  Content.multi([prompt,imagePart])
]);

// Inspect the returned image
if (response.inlineDataParts.isNotEmpty) {
  final imageBytes = response.inlineDataParts[0].bytes;
  // Process the image
} else {
  // Handle the case where no images were generated
  print('Error: No images were generated.');
}

// Follow up requests do not need to specify the image again
final followUpResponse = await chat.sendMessage([
  Content.text("But make it old-school line drawing style")
]);

// Inspect the returned image
if (followUpResponse.inlineDataParts.isNotEmpty) {
  final followUpImageBytes = response.inlineDataParts[0].bytes;
  // Process the image
} else {
  // Handle the case where no images were generated
  print('Error: No images were generated.');
}

Unity


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: new GenerationConfig(
    responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);

// Prepare an image for the model to edit
var imageFile = System.IO.File.ReadAllBytes(System.IO.Path.Combine(
  UnityEngine.Application.streamingAssetsPath, "scones.jpg"));
var image = ModelContent.InlineData("image/jpeg", imageFile);

// Provide an initial text prompt instructing the model to edit the image
var prompt = ModelContent.Text("Edit this image to make it look like a cartoon.");

// Initialize the chat
var chat = model.StartChat();

// To generate an initial response, send a user message with the image and text prompt
var response = await chat.SendMessageAsync(new [] { prompt, image });

// Inspect the returned image
var imageParts = response.Candidates.First().Content.Parts
                         .OfType<ModelContent.InlineDataPart>()
                         .Where(part => part.MimeType == "image/png");
// Load the image into a Unity Texture2D object
UnityEngine.Texture2D texture2D = new(2, 2);
if (texture2D.LoadImage(imageParts.First().Data.ToArray())) {
  // Do something with the image
}

// Follow up requests do not need to specify the image again
var followUpResponse = await chat.SendMessageAsync("But make it old-school line drawing style");

// Inspect the returned image
var followUpImageParts = followUpResponse.Candidates.First().Content.Parts
                         .OfType<ModelContent.InlineDataPart>()
                         .Where(part => part.MimeType == "image/png");
// Load the image into a Unity Texture2D object
UnityEngine.Texture2D followUpTexture2D = new(2, 2);
if (followUpTexture2D.LoadImage(followUpImageParts.First().Data.ToArray())) {
  // Do something with the image
}

تعرَّف على كيفية اختيار نموذج مناسب لحالة الاستخدام والتطبيق.



الميزات المتاحة والقيود وأفضل الممارسات

الإمكانات والأساليب المتاحة

في ما يلي الوسائط والإمكانات المتوافقة لإخراج الصور من نموذج Gemini. تعرض كل ميزة مثالاً على طلب وتحتوي على مثال على رمز برمجي أعلاه.

  • النص إلى الصورة (النص فقط إلى الصورة)

    • إنشاء صورة لبرج إيفل مع ألعاب نارية في الخلفية
  • التحويل من نص إلى صورة (عرض النص)

    • أنشئ صورة سينمائية لمبنى كبير من خلال إسقاط هذا النص الضخم على واجهة المبنى.
  • النص إلى صور ونص (مُدرَج)

    • أنشئ وصفة توضيحية لطبق paella. أنشئ صورًا بجانب النص أثناء إنشاء الوصفة.

    • أنشئ قصة عن كلب بنمط رسم كرتوني ثلاثي الأبعاد. أنشئ صورة لكل مشهد.

  • تحويل الصور والنصوص إلى صور ونصوص (متداخلة)

    • [صورة لغرفة مفروشة] + ما هي الألوان الأخرى للأرائك التي تناسب مساحتي؟ هل يمكنك تعديل الصورة؟
  • تعديل الصور (تحويل النص والصورة إلى صورة)

    • [صورة لكعكات] + تعديل هذه الصورة لتبدو وكأنها صورة كارتونية

    • [image of a cat] + [image of a pillow] + أريد إنشاء صورة قطتي باستخدام التطريز على هذه الوسادة.

  • تعديل الصور المتعدّد الخطوات (المحادثة)

    • [صورة سيارة زرقاء] + احوِّل هذه السيارة إلى سيارة قابلة للتحويل.، ثم غيِّر اللون الآن إلى أصفر.

القيود وأفضل الممارسات

في ما يلي القيود وأفضل الممارسات المتعلّقة بإخراج الصور من نموذج Gemini.

  • في هذا الإصدار التجريبي العلني، تتيح Gemini ما يلي:

    • إنشاء صور بتنسيق PNG بحد أقصى 1024 بكسل
    • إنشاء صور لأشخاص وتعديلها
    • استخدام فلاتر أمان توفّر تجربة مستخدم مرنة وأقل تقييدًا
  • للحصول على أفضل أداء، استخدِم اللغات التالية: en وes-mx وja-jp وzh-cn وhi-in.

  • لا تتيح ميزة إنشاء الصور إدخالات صوتية أو فيديوهات.

  • قد لا يتم تفعيل ميزة إنشاء الصور في بعض الأحيان. في ما يلي بعض المشاكل المعروفة:

    • قد يعرض النموذج نصًا فقط.
      جرِّب طلب نتائج الصور بشكل صريح (على سبيل المثال، "أنشئ صورة"، "قدِّم الصور أثناء الإجرا��"، "عدِّل الصورة").

    • قد يتوقف النموذج عن إنشاء المحتوى في منتصف العملية.
      يُرجى إعادة المحاولة أو استخدام طلب مختلف.

    • قد ينشئ النموذج نصًا كصورة.
      جرِّب طلب النتائج النصية صراحةً. على سبيل المثال، "إنشاء سردي نص مع الرسوم التوضيحية".

  • عند إنشاء نص لصورة، يعمل Gemini بشكل أفضل إذا أولاً أنشأت النص ثم طلبت صورة تتضمّن النص.