Skip to content

fix: Product operation produces float result for all input types #501

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Mar 26, 2024
2 changes: 1 addition & 1 deletion bigframes/core/compile/aggregate_compiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -190,7 +190,7 @@ def _(
.else_(magnitude * pow(-1, negative_count_parity))
.end()
)
return float_result.cast(column.type()) # type: ignore
return float_result


@compile_unary_agg.register
Expand Down
5 changes: 1 addition & 4 deletions bigframes/operations/aggregations.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,10 +139,7 @@ class ProductOp(UnaryAggregateOp):
name: ClassVar[str] = "product"

def output_type(self, *input_types: dtypes.ExpressionType):
if pd.api.types.is_bool_dtype(input_types[0]):
return dtypes.INT_DTYPE
else:
return input_types[0]
return dtypes.FLOAT_DTYPE


@dataclasses.dataclass(frozen=True)
Expand Down
3 changes: 1 addition & 2 deletions tests/system/small/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,8 +228,7 @@ def test_dataframe_groupby_multi_sum(
(lambda x: x.cumsum(numeric_only=True)),
(lambda x: x.cummax(numeric_only=True)),
(lambda x: x.cummin(numeric_only=True)),
# pandas 2.2 uses floating point for cumulative product even for
# integer inputs.
# Pre-pandas 2.2 doesn't always proeduce float.
(lambda x: x.cumprod().astype("Float64")),
(lambda x: x.shift(periods=2)),
],
Expand Down
2 changes: 1 addition & 1 deletion tests/system/small/test_series.py
Original file line number Diff line number Diff line change
Expand Up @@ -1481,7 +1481,7 @@ def test_groupby_prod(scalars_dfs):
bf_series = scalars_df[col_name].groupby(scalars_df["int64_col"]).prod()
pd_series = (
scalars_pandas_df[col_name].groupby(scalars_pandas_df["int64_col"]).prod()
)
).astype(pd.Float64Dtype())
# TODO(swast): Update groupby to use index based on group by key(s).
bf_result = bf_series.to_pandas()
assert_series_equal(
Expand Down
8 changes: 4 additions & 4 deletions third_party/bigframes_vendored/pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -4416,10 +4416,10 @@ def cumprod(self) -> DataFrame:
[3 rows x 2 columns]

>>> df.cumprod()
A B
0 3 1
1 3 2
2 6 6
A B
0 3.0 1.0
1 3.0 2.0
2 6.0 6.0
<BLANKLINE>
[3 rows x 2 columns]

Expand Down