Skip to content

fix: correct index labels in multiple aggregations for DataFrameGroupBy #723

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
May 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 24 additions & 3 deletions bigframes/core/groupby/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -339,9 +339,30 @@ def _agg_list(self, func: typing.Sequence) -> df.DataFrame:
for col_id in self._aggregated_columns()
for f in func
]
column_labels = [
(col_id, f) for col_id in self._aggregated_columns() for f in func
]

if self._block.column_labels.nlevels > 1:
# Restructure MultiIndex for proper format: (idx1, idx2, func)
# rather than ((idx1, idx2), func).
aggregated_columns = pd.MultiIndex.from_tuples(
[
self._block.col_id_to_label[col_id]
for col_id in self._aggregated_columns()
],
names=[*self._block.column_labels.names],
).to_frame(index=False)

column_labels = [
tuple(col_id) + (f,)
for col_id in aggregated_columns.to_numpy()
for f in func
]
else:
column_labels = [
(self._block.col_id_to_label[col_id], f)
for col_id in self._aggregated_columns()
for f in func
]

agg_block, _ = self._block.aggregate(
by_column_ids=self._by_col_ids,
aggregations=aggregations,
Expand Down
17 changes: 17 additions & 0 deletions tests/system/small/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -144,6 +144,23 @@ def test_dataframe_groupby_agg_list(scalars_df_index, scalars_pandas_df_index):
pd.testing.assert_frame_equal(pd_result, bf_result_computed, check_dtype=False)


def test_dataframe_groupby_agg_list_w_column_multi_index(
scalars_df_index, scalars_pandas_df_index
):
columns = ["int64_too", "string_col", "bool_col"]
multi_columns = pd.MultiIndex.from_tuples(zip(["a", "b", "a"], columns))
bf_df = scalars_df_index[columns].copy()
bf_df.columns = multi_columns
pd_df = scalars_pandas_df_index[columns].copy()
pd_df.columns = multi_columns

bf_result = bf_df.groupby(level=0).agg(["count", "min"])
pd_result = pd_df.groupby(level=0).agg(["count", "min"])

bf_result_computed = bf_result.to_pandas()
pd.testing.assert_frame_equal(pd_result, bf_result_computed, check_dtype=False)


@pytest.mark.parametrize(
("as_index"),
[
Expand Down
22 changes: 22 additions & 0 deletions third_party/bigframes_vendored/pandas/core/groupby/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -1092,6 +1092,17 @@ def agg(self, func, **kwargs):
<BLANKLINE>
[2 rows x 2 columns]

Multiple aggregations

>>> df.groupby('A').agg(['min', 'max'])
B C
min max min max
A
1 1 2 0.227877 0.362838
2 3 4 -0.56286 1.267767
<BLANKLINE>
[2 rows x 4 columns]

Args:
func (function, str, list, dict or None):
Function to use for aggregating the data.
Expand Down Expand Up @@ -1140,6 +1151,17 @@ def aggregate(self, func, **kwargs):
<BLANKLINE>
[2 rows x 2 columns]

Multiple aggregations

>>> df.groupby('A').agg(['min', 'max'])
B C
min max min max
A
1 1 2 0.227877 0.362838
2 3 4 -0.56286 1.267767
<BLANKLINE>
[2 rows x 4 columns]

Args:
func (function, str, list, dict or None):
Function to use for aggregating the data.
Expand Down