You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
LvLLM is a special NUMA extension of vllm that makes full use of CPU and memory resources, reduces GPU memory requirements, and features an efficient GPU parallel and NUMA parallel architecture, supporting hybrid inference for MOE large models.
TAT-QA (Tabular And Textual dataset for Question Answering) contains 16,552 questions associated with 2,757 hybrid contexts from real-world financial reports.
This documents the training and evaluation of a Hybrid CNN-LSTM Attention model for time series classification in a dataset. The model combines convolutional neural networks (CNNs) for feature extraction, long short-term memory (LSTM) networks for sequential modeling, and attention mechanisms to focus on important parts of the sequence.
Prototype hybrid classical-quantum workflow aligned with NVIDIA quantum-GPU news. Includes a policy gate for AI safety and security, uses a Qiskit simulator backend, emits JSON for audit, and can be extended to CUDA-Q or neutral-atom or photonic hardware.
Machine Learning Model to detect hidden malwares and phase changing malwares.It predicts the date of the next probable attack of the malware and its extent.It deals with the change in network traffic flow.It is developed in Python in Jupyter notebook.
A Genetic Algorithm (GA) / Discrete Particle Swarm Optimization/ Hybrid (GA-PSO) for nuclear fuel optimization using ML surrogates (DNN, KNN, Random Forest, Ridge) and OpenMC. Optimizes fuel loading patterns for a target k-eff and minimal Power Peaking Factor (PPF).