In the frame on a research work, I needed to find quickly the smallest $p$ such that $$\large p!!\geq A$$ $A$ being a very large number.
In a first step, I tried to solve the equality using the superb approximation @robjohn produced eight years ago; it write
$$ n!=a^n \,A \qquad \implies \qquad n\sim e\,a \exp\Bigg(W\left(\log \left(\frac{A^2}{2 \pi a}\right)\right) \Bigg)-\frac 12 \tag 1$$ where $W(.)$ is the principal branch of Lambert function.
For the first case
$$(2n)!!=2^n\, \Gamma (n+1)$$ it is simple since $a=\frac 12$, leading to $$n_1 \sim e\,\exp\Bigg(W\left(\log \left(\frac{A^2}{\pi}\right)\right) \Bigg)-1 \quad \text{with}\qquad A=(2n)!!$$
This gives very decent results $$\left( \begin{array}{cc} p & \text{approximation}\\ 2 & 1.95022 \\ 4 & 3.97945 \\ 6 & 5.98782 \\ 8 & 7.99159 \\ 10 & 9.99369 \\ 20 & 19.9974 \\ 30 & 29.9984 \\ 40 & 39.9989 \\ 50 & 49.9992 \\ 60 & 59.9993 \\ 70 & 69.9994 \\ 80 & 79.9995 \\ 90 & 89.9996 \\ 100 & 99.9996 \\ \end{array} \right)$$
For the second case $$(2n+1)!!=\frac{2^{n+1}}{\sqrt{\pi }} \Gamma \left(n+\frac{3}{2}\right)$$
it is a bit more delicate since $a=\frac 12 \left(\frac{\sqrt{\pi }}{2}\right)^{\frac{1}{n}} $. Being short of idea, I approximated it by $a\sim\frac 12 \left(\frac{\sqrt{\pi}}{2}\right)^{\frac{1}{n_1}} $ and used $(1)$ with $A=(2n+1)!!$
Combining both cases and at the price of minor approximations
$$\large \color{blue}{p\sim e\,\exp\Bigg[W\left(\frac{1}{e}\log \left(\frac{A^2}{e}\right)\right) \Bigg]-1}$$
Some results for the equation $$\color{red}{\huge p!!=10^k}$$
$$\left( \begin{array}{ccc} k & \text{estimate} & \text{solution} \\ 1 & 4.33968 & 4.34257 \\ 2 & 6.79424 & 6.95182 \\ 3 & 8.90847 & 9.04794 \\ 4 & 10.8393 & 10.9684 \\ 5 & 12.6494 & 12.7450 \\ 6 & 14.3714 & 14.3729 \\ 7 & 16.0253 & 15.9778 \\ 8 & 17.6241 & 17.6253 \\ 9 & 19.1773 & 19.2586 \\ 10 & 20.6916 & 20.7763 \\ 20 & 34.4678 & 34.4898 \\ 30 & 46.8288 & 46.9065 \\ 40 & 58.3999 & 58.4041 \\ 50 & 69.4384 & 69.4640\\ 60 & 80.0819 & 80.0500 \\ 70 & 90.4152 & 90.4213 \\ 80 & 100.495 & 100.515 \\ 90 & 110.362 & 110.359 \\ 100 & 120.047 & 120.017 \\ 200 & 210.335 & 210.328 \\ 300 & 293.630 & 293.628 \\ 400 & 372.898 & 372.950 \\ 500 & 449.397 & 449.419 \\ 600 & 523.811 & 523.795 \\ 700 & 596.570 & 596.593 \\ 800 & 667.964 & 667.942 \\ 900 & 738.203 & 738.186 \\ 1000 & 807.443 & 807.459 \\ \end{array} \right)$$
So, at the time being, we have approximations for the inverse of the factorial, the hyperfactorial and the double factorial functions
My questions
- Could we improve this one ?
- Could we generalize the problem to multiple factorials ?
Any idea or suggestion would be very welcome.