Skip to main content

Agent Framework / shim to use Pydantic with LLMs

Project description

Agent Framework / shim to use Pydantic with LLMs
CI Coverage PyPI versions license

Documentation: ai.pydantic.dev


PydanticAI is a Python agent framework designed to make it less painful to build production grade applications with Generative AI.

FastAPI revolutionized web development by offering an innovative and ergonomic design, built on the foundation of Pydantic.

Similarly, virtually every agent framework and LLM library in Python uses Pydantic, yet when we began to use LLMs in Pydantic Logfire, we couldn't find anything that gave us the same feeling.

We built PydanticAI with one simple aim: to bring that FastAPI feeling to GenAI app development.

Why use PydanticAI

  • Built by the Pydantic Team Built by the team behind Pydantic (the validation layer of the OpenAI SDK, the Anthropic SDK, LangChain, LlamaIndex, AutoGPT, Transformers, CrewAI, Instructor and many more).

  • Model-agnostic Supports OpenAI, Anthropic, Gemini, Deepseek, Ollama, Groq, Cohere, and Mistral, and there is a simple interface to implement support for other models.

  • Pydantic Logfire Integration Seamlessly integrates with Pydantic Logfire for real-time debugging, performance monitoring, and behavior tracking of your LLM-powered applications.

  • Type-safe Designed to make type checking as powerful and informative as possible for you.

  • Python-centric Design Leverages Python's familiar control flow and agent composition to build your AI-driven projects, making it easy to apply standard Python best practices you'd use in any other (non-AI) project.

  • Structured Responses Harnesses the power of Pydantic to validate and structure model outputs, ensuring responses are consistent across runs.

  • Dependency Injection System Offers an optional dependency injection system to provide data and services to your agent's system prompts, tools and output validators. This is useful for testing and eval-driven iterative development.

  • Streamed Responses Provides the ability to stream LLM outputs continuously, with immediate validation, ensuring rapid and accurate outputs.

  • Graph Support Pydantic Graph provides a powerful way to define graphs using typing hints, this is useful in complex applications where standard control flow can degrade to spaghetti code.

Hello World Example

Here's a minimal example of PydanticAI:

from pydantic_ai import Agent

# Define a very simple agent including the model to use, you can also set the model when running the agent.
agent = Agent(
    'google-gla:gemini-1.5-flash',
    # Register a static system prompt using a keyword argument to the agent.
    # For more complex dynamically-generated system prompts, see the example below.
    system_prompt='Be concise, reply with one sentence.',
)

# Run the agent synchronously, conducting a conversation with the LLM.
# Here the exchange should be very short: PydanticAI will send the system prompt and the user query to the LLM,
# the model will return a text response. See below for a more complex run.
result = agent.run_sync('Where does "hello world" come from?')
print(result.output)
"""
The first known use of "hello, world" was in a 1974 textbook about the C programming language.
"""

(This example is complete, it can be run "as is")

Not very interesting yet, but we can easily add "tools", dynamic system prompts, and structured responses to build more powerful agents.

Tools & Dependency Injection Example

Here is a concise example using PydanticAI to build a support agent for a bank:

(Better documented example in the docs)

from dataclasses import dataclass

from pydantic import BaseModel, Field
from pydantic_ai import Agent, RunContext

from bank_database import DatabaseConn


# SupportDependencies is used to pass data, connections, and logic into the model that will be needed when running
# system prompt and tool functions. Dependency injection provides a type-safe way to customise the behavior of your agents.
@dataclass
class SupportDependencies:
    customer_id: int
    db: DatabaseConn


# This pydantic model defines the structure of the output returned by the agent.
class SupportOutput(BaseModel):
    support_advice: str = Field(description='Advice returned to the customer')
    block_card: bool = Field(description="Whether to block the customer's card")
    risk: int = Field(description='Risk level of query', ge=0, le=10)


# This agent will act as first-tier support in a bank.
# Agents are generic in the type of dependencies they accept and the type of output they return.
# In this case, the support agent has type `Agent[SupportDependencies, SupportOutput]`.
support_agent = Agent(
    'openai:gpt-4o',
    deps_type=SupportDependencies,
    # The response from the agent will, be guaranteed to be a SupportOutput,
    # if validation fails the agent is prompted to try again.
    output_type=SupportOutput,
    system_prompt=(
        'You are a support agent in our bank, give the '
        'customer support and judge the risk level of their query.'
    ),
)


# Dynamic system prompts can make use of dependency injection.
# Dependencies are carried via the `RunContext` argument, which is parameterized with the `deps_type` from above.
# If the type annotation here is wrong, static type checkers will catch it.
@support_agent.system_prompt
async def add_customer_name(ctx: RunContext[SupportDependencies]) -> str:
    customer_name = await ctx.deps.db.customer_name(id=ctx.deps.customer_id)
    return f"The customer's name is {customer_name!r}"


# `tool` let you register functions which the LLM may call while responding to a user.
# Again, dependencies are carried via `RunContext`, any other arguments become the tool schema passed to the LLM.
# Pydantic is used to validate these arguments, and errors are passed back to the LLM so it can retry.
@support_agent.tool
async def customer_balance(
        ctx: RunContext[SupportDependencies], include_pending: bool
) -> float:
    """Returns the customer's current account balance."""
    # The docstring of a tool is also passed to the LLM as the description of the tool.
    # Parameter descriptions are extracted from the docstring and added to the parameter schema sent to the LLM.
    balance = await ctx.deps.db.customer_balance(
        id=ctx.deps.customer_id,
        include_pending=include_pending,
    )
    return balance


...  # In a real use case, you'd add more tools and a longer system prompt


async def main():
    deps = SupportDependencies(customer_id=123, db=DatabaseConn())
    # Run the agent asynchronously, conducting a conversation with the LLM until a final response is reached.
    # Even in this fairly simple case, the agent will exchange multiple messages with the LLM as tools are called to retrieve an output.
    result = await support_agent.run('What is my balance?', deps=deps)
    # The `result.output` will be validated with Pydantic to guarantee it is a `SupportOutput`. Since the agent is generic,
    # it'll also be typed as a `SupportOutput` to aid with static type checking.
    print(result.output)
    """
    support_advice='Hello John, your current account balance, including pending transactions, is $123.45.' block_card=False risk=1
    """

    result = await support_agent.run('I just lost my card!', deps=deps)
    print(result.output)
    """
    support_advice="I'm sorry to hear that, John. We are temporarily blocking your card to prevent unauthorized transactions." block_card=True risk=8
    """

Next Steps

To try PydanticAI yourself, follow the instructions in the examples.

Read the docs to learn more about building applications with PydanticAI.

Read the API Reference to understand PydanticAI's interface.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_ai-0.2.4.tar.gz (36.6 MB view details)

Uploaded Source

Built Distribution

pydantic_ai-0.2.4-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file pydantic_ai-0.2.4.tar.gz.

File metadata

  • Download URL: pydantic_ai-0.2.4.tar.gz
  • Upload date:
  • Size: 36.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pydantic_ai-0.2.4.tar.gz
Algorithm Hash digest
SHA256 f80820f4b84d35c9155cf5bd79881576eca141f7b7a232ed840811a4307ee0ea
MD5 64191fdb7d50863b816fa2b928e2b51a
BLAKE2b-256 51358a1b3850a8bfdcc79d57f42cfddcfa781a71a887a51bd67c13b4d48e188f

See more details on using hashes here.

Provenance

The following attestation bundles were made for pydantic_ai-0.2.4.tar.gz:

Publisher: ci.yml on pydantic/pydantic-ai

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file pydantic_ai-0.2.4-py3-none-any.whl.

File metadata

  • Download URL: pydantic_ai-0.2.4-py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pydantic_ai-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 557b75f2dbc016e80364c55932f628d91747bf4173b50fb815d9d8e60dc7e4b4
MD5 28be27e976d8c39367f0afe5bef00ed5
BLAKE2b-256 60d1b99f269c21fe6b46ed360db121afddf68614b83df0f5235454dbf8d43251

See more details on using hashes here.

Provenance

The following attestation bundles were made for pydantic_ai-0.2.4-py3-none-any.whl:

Publisher: ci.yml on pydantic/pydantic-ai

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page