Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
GraphProduct
  • See Also
    • GraphDisjointUnion
    • GraphUnion
    • GraphIntersection
    • GraphSum
    • GraphJoin
    • GraphComplement
    • GraphPower
    • ReverseGraph
    • LineGraph
  • Related Guides
    • Graph Operations and Modifications
    • See Also
      • GraphDisjointUnion
      • GraphUnion
      • GraphIntersection
      • GraphSum
      • GraphJoin
      • GraphComplement
      • GraphPower
      • ReverseGraph
      • LineGraph
    • Related Guides
      • Graph Operations and Modifications

GraphProduct[g1,g2]

gives the Cartesian product of the graphs g1 and g2.

GraphProduct[g1,g2,"op"]

gives the product of type "op" for the graphs g1 and g2

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Directed Graphs  
Undirected Graphs  
Mixed Graphs  
Multigraphs  
Weighted Graphs  
Special Graphs  
Properties & Relations  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • GraphDisjointUnion
    • GraphUnion
    • GraphIntersection
    • GraphSum
    • GraphJoin
    • GraphComplement
    • GraphPower
    • ReverseGraph
    • LineGraph
  • Related Guides
    • Graph Operations and Modifications
    • See Also
      • GraphDisjointUnion
      • GraphUnion
      • GraphIntersection
      • GraphSum
      • GraphJoin
      • GraphComplement
      • GraphPower
      • ReverseGraph
      • LineGraph
    • Related Guides
      • Graph Operations and Modifications

GraphProduct

GraphProduct[g1,g2]

gives the Cartesian product of the graphs g1 and g2.

GraphProduct[g1,g2,"op"]

gives the product of type "op" for the graphs g1 and g2

Details and Options

  • GraphProduct is also known as box product.
  • GraphProduct is typically used to produce new graphs from Boolean combinations of initial graphs.
  • GraphProduct[g1,g2] gives a graph with vertices formed from the Cartesian product of the vertices of g1 and vertices of g2. The vertices {u1,u2} and {v1,v2} are connected if u1v1 and u2 is connected to v2, or u2v2 and u1 is connected to v1.
  • GraphProduct[g1,g2,"op"] gives a graph product of type "op" with edges {u1,u2}{v1,v2} subject to the following conditions:
  • "Cartesian"(u1v1 ∧ u2v2)∨(u2v2∧u1v1)
    "Conormal"(u1v1)∨(u2v2)
    "Lexicographical"(u1v1)∨(u1v1∧u2v2)
    "Normal"(u1v1∧u2v2)∨(u2v2∧u1v1)∨(u1v1∧u2v2)
    "Rooted"(u1v1 ∧ u2v2)∨(u1v1 ∧ u2v2r)
    "Tensor"(u1v1)∧(u2v2)
  • The vertex r is the first vertex in VertexList[g2].
  • GraphProduct[g1,g2] is effectively equivalent to GraphProduct[g1,g2,"Cartesian"].
  • GraphProduct works with undirected graphs, directed graphs, multigraphs and mixed graphs.

Examples

open all close all

Basic Examples  (3)

Cartesian product of two graphs:

A table of graph products:

Generate grid graphs:

Torus graphs:

Scope  (30)

Directed Graphs  (5)

GraphProduct works with directed graphs:

Simple directed graphs:

Directed multigraphs:

Directed weighted graphs:

Directed annotated graphs:

Undirected Graphs  (5)

GraphProduct works with undirected graphs:

Simple undirected graphs:

Undirected multigraphs:

Undirected weighted graphs:

Undirected annotated graphs:

Mixed Graphs  (5)

GraphProduct works with mixed graphs:

Simple mixed graphs:

Mixed multigraphs:

Mixed weighted graphs:

Mixed annotated graphs:

Multigraphs  (5)

GraphProduct works with multigraphs:

Directed multigraphs:

Mixed multigraphs:

Weighted multigraphs:

Annotated multigraphs:

Weighted Graphs  (5)

GraphProduct works with weighted graphs:

Directed weighted graphs:

Undirected weighted graphs:

Mixed weighted graphs:

Annotated weighted graphs:

Special Graphs  (5)

GraphProduct works on entity graphs:

GraphProduct works on trees:

Use rules to specify the graph:

GraphProduct works with more than two graphs:

Generate a list of different graph products:

Properties & Relations  (6)

For two graphs with vi vertices, the number of vertices of their product is v1 v2 :

For two undirected graphs with vi vertices and ei edges, the number of edges of the Cartesian product is v1 e2+v2 e1:

Tensor product is 2 e1e2:

Lexicographical product is v1 e2+ e1v22 :

Normal product is v1 e2+v2 e1 + 2 e1e2:

Co-normal product is v12 e2+ e1v22 - 2e1e2:

Rooted product is v1 e2+ e1:

The Cartesian product of two single edges is a cycle:

The normal product of two single edges is a complete graph:

The tensor product of two single edges is a cross:

TorusGraph[{m,n}] is the graph formed from the Cartesian product of the cycle graphs and :

See Also

GraphDisjointUnion  GraphUnion  GraphIntersection  GraphSum  GraphJoin  GraphComplement  GraphPower  ReverseGraph  LineGraph

Related Guides

    ▪
  • Graph Operations and Modifications

History

Introduced in 2022 (13.1)

Wolfram Research (2022), GraphProduct, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphProduct.html.

Text

Wolfram Research (2022), GraphProduct, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphProduct.html.

CMS

Wolfram Language. 2022. "GraphProduct." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/GraphProduct.html.

APA

Wolfram Language. (2022). GraphProduct. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GraphProduct.html

BibTeX

@misc{reference.wolfram_2025_graphproduct, author="Wolfram Research", title="{GraphProduct}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/GraphProduct.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_graphproduct, organization={Wolfram Research}, title={GraphProduct}, year={2022}, url={https://reference.wolfram.com/language/ref/GraphProduct.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English