Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
StreamDensityPlot
  • See Also
    • StreamPlot
    • StreamPlot3D
    • VectorPlot
    • ListStreamPlot
    • LineIntegralConvolutionPlot
    • DensityPlot
    • ParametricPlot
    • ContourPlot
    • Plot3D
    • VectorPlot3D
    • SliceVectorPlot3D
    • DensityPlot3D
    • SliceDensityPlot3D
    • GeoStreamPlot
  • Related Guides
    • Vector Visualization
    • See Also
      • StreamPlot
      • StreamPlot3D
      • VectorPlot
      • ListStreamPlot
      • LineIntegralConvolutionPlot
      • DensityPlot
      • ParametricPlot
      • ContourPlot
      • Plot3D
      • VectorPlot3D
      • SliceVectorPlot3D
      • DensityPlot3D
      • SliceDensityPlot3D
      • GeoStreamPlot
    • Related Guides
      • Vector Visualization

StreamDensityPlot[{{vx,vy},r},{x,xmin,xmax},{y,ymin,ymax}]

generates a stream plot of the vector field {vx,vy} as a function of x and y, superimposed on a background density plot of the scalar field r.

StreamDensityPlot[{vx,vy},{x,xmin,xmax},{y,ymin,ymax}]

takes the scalar field to be the norm of the vector field.

StreamDensityPlot[{{vx,vy},{wx,wy},…,r},{x,xmin,xmax},{y,ymin,ymax}]

generates plots of several vector fields.

StreamDensityPlot[…,{x,y}∈reg]

takes the variables {x,y} to be in the geometric region reg.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Sampling  
Presentation  
Options  
Background  
BoundaryStyle  
ColorFunction  
Show More Show More
ColorFunctionScaling  
EvaluationMonitor  
MaxRecursion  
Mesh  
MeshFunctions  
MeshShading  
MeshStyle  
NormalsFunction  
PerformanceGoal  
PlotLegends  
PlotRange  
PlotTheme  
RegionFunction  
StreamColorFunction  
StreamColorFunctionScaling  
StreamMarkers  
StreamPoints  
StreamScale  
StreamStyle  
Applications  
Properties & Relations  
Properties & Relations  
Neat Examples  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • StreamPlot
    • StreamPlot3D
    • VectorPlot
    • ListStreamPlot
    • LineIntegralConvolutionPlot
    • DensityPlot
    • ParametricPlot
    • ContourPlot
    • Plot3D
    • VectorPlot3D
    • SliceVectorPlot3D
    • DensityPlot3D
    • SliceDensityPlot3D
    • GeoStreamPlot
  • Related Guides
    • Vector Visualization
    • See Also
      • StreamPlot
      • StreamPlot3D
      • VectorPlot
      • ListStreamPlot
      • LineIntegralConvolutionPlot
      • DensityPlot
      • ParametricPlot
      • ContourPlot
      • Plot3D
      • VectorPlot3D
      • SliceVectorPlot3D
      • DensityPlot3D
      • SliceDensityPlot3D
      • GeoStreamPlot
    • Related Guides
      • Vector Visualization

StreamDensityPlot

StreamDensityPlot[{{vx,vy},r},{x,xmin,xmax},{y,ymin,ymax}]

generates a stream plot of the vector field {vx,vy} as a function of x and y, superimposed on a background density plot of the scalar field r.

StreamDensityPlot[{vx,vy},{x,xmin,xmax},{y,ymin,ymax}]

takes the scalar field to be the norm of the vector field.

StreamDensityPlot[{{vx,vy},{wx,wy},…,r},{x,xmin,xmax},{y,ymin,ymax}]

generates plots of several vector fields.

StreamDensityPlot[…,{x,y}∈reg]

takes the variables {x,y} to be in the geometric region reg.

Details and Options

  • StreamDensityPlot plots streamlines that show the local direction of the vector field at every point.
  • StreamDensityPlot generates a stream plot of the vector field {vx,vy}, superimposed on a background density plot of the scalar field r.
  • StreamDensityPlot plots streamlines defined by and where is an interpolated function of the vector data and is an initial stream point. The streamline is the curve passing through point , and whose tangents correspond to the vector field at each point.
  • The streamlines are drawn over a density plot of the scalar field , whose default value is the magnitude of the vector field.
  • The streamlines are colored by default according to the magnitude of the vector field and have an arrow in the direction of increasing value of .
  • StreamDensityPlot by default shows enough streamlines to achieve a roughly uniform density throughout the plot.
  • StreamDensityPlot does not show streamlines at any positions for which the vi etc. do not evaluate to real numbers.
  • StreamDensityPlot treats the variables x and y as local, effectively using Block.
  • StreamDensityPlot has attribute HoldAll, and evaluates the vi etc. only after assigning specific numerical values to x and y.
  • In some cases it may be more efficient to use Evaluate to evaluate the vi etc. symbolically before specific numerical values are assigned to x and y.
  • StreamDensityPlot has the same options as Graphics, with the following additions and changes: [List of all options]
  • AspectRatio1ratio of height to width
    BoundaryStyle Nonehow to draw RegionFunction boundaries
    BoxRatiosAutomaticeffective 3D box ratios for simulated lighting
    ColorFunction Automatichow to color background densities
    ColorFunctionScaling Truewhether to scale arguments to ColorFunction
    EvaluationMonitor Noneexpression to evaluate at every function evaluation
    FrameTruewhether to draw a frame around the plot
    FrameTicksAutomaticframe tick marks
    LightingAngleNoneeffective angle for simulated lighting
    MaxRecursion Automaticthe maximum number of recursive subdivisions allowed for the scalar field
    Mesh Nonehow many mesh lines to draw in the background
    MeshFunctions {#5&}how to determine the placement of mesh lines
    MeshShading Nonehow to shade regions between mesh lines
    MeshStyle Automaticthe style of mesh lines
    MethodAutomaticmethods to use for the plot
    PerformanceGoal $PerformanceGoalaspects of performance to try to optimize
    PlotLegends Nonelegends to include
    PlotRange {Full,Full}range of x, y values to include
    PlotRangePaddingAutomatichow much to pad the range of values
    PlotTheme $PlotThemeoverall theme for the plot
    RegionFunction True&determine what region to include
    ScalingFunctionsNonehow to scale individual coordinates
    StreamColorFunction Automatichow to color streamlines
    StreamColorFunctionScaling Truewhether to scale the argument to StreamColorFunction
    StreamMarkers Automaticshape to use for streams
    StreamPoints Automaticdetermine number, placement, and closeness of streamlines
    StreamScale Automaticdetermine sizes and segmenting of individual streamlines
    StreamStyle Automatichow to draw streamlines
    WorkingPrecisionMachinePrecisionprecision to use in internal computations
  • The arguments supplied to functions in MeshFunctions, RegionFunction, ColorFunction, and StreamColorFunction are x, y, vx, vy, r.
  • The default setting MeshFunctions->{#5&} draws mesh lines for the scalar field r.
  • Possible settings for ScalingFunctions are:
  • {sx,sy}scale x and y axes
  • Common built-in scaling functions s include:
  • "Log"log scale with automatic tick labeling
    "Log10"base-10 log scale with powers of 10 for ticks
    "SignedLog"log-like scale that includes 0 and negative numbers
    "Reverse"reverse the coordinate direction
    "Infinite"infinite scale
  • List of all options

    • AlignmentPointCenterthe default point in the graphic to align with
      AspectRatio1ratio of height to width
      AxesFalsewhether to draw axes
      AxesLabelNoneaxes labels
      AxesOriginAutomaticwhere axes should cross
      AxesStyle{}style specifications for the axes
      BackgroundNonebackground color for the plot
      BaselinePositionAutomatichow to align with a surrounding text baseline
      BaseStyle{}base style specifications for the graphic
      BoundaryStyleNonehow to draw RegionFunction boundaries
      BoxRatiosAutomaticeffective 3D box ratios for simulated lighting
      ColorFunctionAutomatichow to color background densities
      ColorFunctionScalingTruewhether to scale arguments to ColorFunction
      ContentSelectableAutomaticwhether to allow contents to be selected
      CoordinatesToolOptionsAutomaticdetailed behavior of the coordinates tool
      Epilog{}primitives rendered after the main plot
      EvaluationMonitorNoneexpression to evaluate at every function evaluation
      FormatTypeTraditionalFormthe default format type for text
      FrameTruewhether to draw a frame around the plot
      FrameLabelNoneframe labels
      FrameStyle{}style specifications for the frame
      FrameTicksAutomaticframe tick marks
      FrameTicksStyle{}style specifications for frame ticks
      GridLinesNonegrid lines to draw
      GridLinesStyle{}style specifications for grid lines
      ImageMargins0.the margins to leave around the graphic
      ImagePaddingAllwhat extra padding to allow for labels etc.
      ImageSizeAutomaticthe absolute size at which to render the graphic
      LabelStyle{}style specifications for labels
      LightingAngleNoneeffective angle for simulated lighting
      MaxRecursionAutomaticthe maximum number of recursive subdivisions allowed for the scalar field
      MeshNonehow many mesh lines to draw in the background
      MeshFunctions{#5&}how to determine the placement of mesh lines
      MeshShadingNonehow to shade regions between mesh lines
      MeshStyleAutomaticthe style of mesh lines
      MethodAutomaticmethods to use for the plot
      PerformanceGoal$PerformanceGoalaspects of performance to try to optimize
      PlotLabelNonean overall label for the plot
      PlotLegendsNonelegends to include
      PlotRange{Full,Full}range of x, y values to include
      PlotRangeClippingFalsewhether to clip at the plot range
      PlotRangePaddingAutomatichow much to pad the range of values
      PlotRegionAutomaticthe final display region to be filled
      PlotTheme$PlotThemeoverall theme for the plot
      PreserveImageOptionsAutomaticwhether to preserve image options when displaying new versions of the same graphic
      Prolog{}primitives rendered before the main plot
      RegionFunctionTrue&determine what region to include
      RotateLabelTruewhether to rotate y labels on the frame
      ScalingFunctionsNonehow to scale individual coordinates
      StreamColorFunctionAutomatichow to color streamlines
      StreamColorFunctionScalingTruewhether to scale the argument to StreamColorFunction
      StreamMarkersAutomaticshape to use for streams
      StreamPointsAutomaticdetermine number, placement, and closeness of streamlines
      StreamScaleAutomaticdetermine sizes and segmenting of individual streamlines
      StreamStyleAutomatichow to draw streamlines
      TicksAutomaticaxes ticks
      TicksStyle{}style specifications for axes ticks
      WorkingPrecisionMachinePrecisionprecision to use in internal computations

Examples

open all close all

Basic Examples  (4)

Plot the streamlines for a vector field with background based on field magnitude:

Add a legend for the scalar field:

Plot the streamlines for a vector field with background based on a logarithm of field magnitude:

Plot the streamlines for two fields with a background based on the first field's magnitude:

Scope  (24)

Sampling  (11)

Visualize streamlines for a vector field with the background based on :

Plot streamlines for two vector fields with background color based on the first field's magnitude:

Use Evaluate to evaluate the vector field symbolically before numeric assignment:

Plot a vector field with streamlines placed with specified densities:

Plot the streamlines that go through a set of seed points:

Use both automatic and explicit seeding with styles for explicitly seeded streamlines:

Plot streamlines over a specified region:

Use a specific number of mesh lines:

Specify mesh lines:

The domain may be specified by a region:

The domain may be specified by a MeshRegion:

Presentation  (13)

Specify different dashings and arrowheads by settings to StreamScale:

Color the background scalar field with a color function:

Change the color function for the streamlines to reflect the field magnitude:

Apply a variety of streamline styles:

Use different themes for the plot:

Use a named appearance to draw the streamlines:

Style the streamlines as well:

Specify mesh lines with different styles:

Specify global mesh line styles:

Shade mesh regions cyclically:

Apply a variety of styles to region boundaries:

Include a legend for the scalar field:

Include a legend for the streamlines:

Reverse the y scale so it increases toward the bottom:

Options  (85)

Background  (1)

Use colored backgrounds:

BoundaryStyle  (2)

By default, region boundaries have no style:

Change the style of the boundary:

ColorFunction  (6)

Color the field magnitude using Hue:

Color using Hue based on :

Use any named color gradient from ColorData:

Use ColorData for predefined color gradients:

Specify a color function that blends two colors by the coordinate:

Use ColorFunctionScaling->False to get unscaled values:

ColorFunctionScaling  (4)

By default, scaled values are used:

Use ColorFunctionScaling->False to get unscaled values:

Use unscaled coordinates in the direction and scaled coordinates in the direction:

Explicitly specify the scaling for each color function argument:

EvaluationMonitor  (2)

Show where the vector field function is sampled:

Count the number of times the vector field function is evaluated:

MaxRecursion  (1)

Refine the plot where it changes quickly:

Mesh  (5)

By default, no mesh lines are displayed:

Show the final sampling mesh:

Use a specific number of mesh lines:

Specify mesh lines:

Use different styles for different mesh lines:

MeshFunctions  (3)

By default, mesh lines correspond to the magnitude of the field:

Use the value as the mesh function:

Use mesh lines corresponding to fixed distances from the origin:

MeshShading  (3)

Use None to remove regions:

Styles are used cyclically:

Use indexed colors from ColorData cyclically:

MeshStyle  (1)

Apply a variety of styles to the mesh lines:

NormalsFunction  (2)

Do not use normals in shading:

Randomly vary the effective normals:

PerformanceGoal  (2)

Generate a higher-quality plot:

Emphasize performance, possibly at the cost of quality:

PlotLegends  (4)

No legends are included, by default:

Include a legend for the scalar field:

Include a legend for the streamlines:

Control the placement of the legend:

PlotRange  (7)

The full plot range is used by default:

Specify an explicit limit for both and ranges:

Specify an explicit range:

Specify an explicit minimum range:

Specify an explicit range:

Specify an explicit maximum range:

Specify different and ranges:

PlotTheme  (2)

Use a monochrome theme:

Change the stream style:

RegionFunction  (3)

Plot streamlines only over certain quadrants:

Plot streamlines only over regions where the field magnitude is above a given threshold:

Use any logical combination of conditions:

StreamColorFunction  (6)

Color streamlines according to the norm of the vector field:

Color streamlines according to a different scalar field:

Use any named color gradient from ColorData:

Use ColorData for predefined color gradients:

Specify a color function that blends two colors by the coordinate:

Use StreamColorFunctionScaling->False to get unscaled values:

StreamColorFunctionScaling  (4)

By default, scaled values are used:

Use StreamColorFunctionScaling->False to get unscaled values:

Use unscaled coordinates in the direction and scaled coordinates in the direction:

Explicitly specify the scaling for each color function argument:

StreamMarkers  (7)

Streamlines are drawn as arrows by default:

Use a named appearance to draw the streamlines:

Use different markers for different vector fields:

Named arrow styles:

Named dot styles:

Named pointer styles:

Named dart styles:

StreamPoints  (6)

Specify a maximum number of streamlines:

Use symbolic names to specify the number of streamlines:

Use both automatic and explicit seeding with styles for explicitly seeded streamlines:

Specify the minimum distance between streamlines:

Specify the minimum distance between streamlines at the start and end of a streamline:

Control the maximum length that each streamline can have:

StreamScale  (9)

Create full streamlines without segmentation:

Use curves for streamlines:

Use symbolic names to control the lengths of streamlines:

Specify segment lengths:

Specify an explicit dashing pattern for streamlines:

Specify the number of points rendered on each streamline segment:

Specify absolute aspect ratios relative to the longest line segment:

Specify relative aspect ratios relative to each line segment:

Scale the length of the arrows by the coordinate:

StreamStyle  (5)

StreamColorFunction has precedence over colors in StreamStyle:

Set StreamColorFunctionNone to specify colors with StreamStyle:

Apply a variety of styles to the streamlines:

Specify a custom arrowhead:

Set the style for multiple vector fields:

Applications  (16)

Visualize a vector field with the background based on the field's divergence:

Visualize a vector field with the background based on the magnitude of the field's curl:

Show streamlines superimposed on the Hamiltonian for a 2D Hamiltonian system:

Check how closely NDSolve conserves the invariant:

Characterize linear planar systems interactively:

Use a stream plot as a background for an interactive differential equation demo:

Combine several examples into a tabbed view:

Mouse over the tabs to get a description of the field:

Quadratic system with two limit cycles:

Homoclinic loops:

Unfolding a double zero eigenvalue with odd symmetry:

Explore a parameterized vector field using Manipulate:

Vibrating membranes:

Unfolding a function and its gradient field:

Generate a list of rasterized plots for animation:

Animating a list of rasters instead of the original vector graphics may reduce memory usage:

Create an animation that shifts the streamline colors in the direction of the vector norms:

Explore various streamline styles and scales with several examples:

Generate icons to graphically represent field choices:

Click the field icons to switch field plots:

Generate a list of stream plots of varying :

Stack 2D stream plots in 3D:

Properties & Relations  (12)

Use ListStreamDensityPlot for plotting data:

Use StreamPlot for plotting only streamlines without a plot of the scalar field:

Use VectorDensityPlot to plot functions with vectors instead of streamlines:

Use ListVectorDensityPlot to plot data with vectors instead of streamlines:

Use VectorPlot to plot with vectors instead of streamlines without a plot of the scalar field:

Use VectorPlot3D to visualize 3D vector fields:

Use SliceVectorPlot3D to visualize 3D vector fields on a surface:

StreamDensityPlot samples more points where it needs to:

Scalar fields can be plotted by themselves with DensityPlot:

Use LineIntegralConvolutionPlot to plot the line integral convolution of a vector field:

Plot complex functions as a vector field:

GeoStreamPlot plots streamlines on a map of the Earth:

Properties & Relations  (12)

Use VectorDensityPlot to plot with vectors instead of streamlines:

Use StreamPlot or VectorPlot for plotting functions without a density plot of the scalar field:

Use ListStreamDensityPlot to plot with data:

Use ListStreamPlot for plotting data without a density plot:

Use ListVectorPlot to plot vectors instead of streamlines:

Use ListVectorDensityPlot to add the density plot to the vectors:

Use VectorDisplacementPlot to visualize the deformation of a region associated with a displacement vector field:

Use ListVectorDisplacementPlot to visualize the same deformation based on data:

Use VectorDisplacementPlot3D to visualize the deformation of a 3D region associated with a displacement vector field:

Use ListVectorDisplacementPlot3D to visualize the same deformation based on data:

Use VectorPlot3D or StreamPlot3D to visualize a 3D vector field:

Use ListVectorPlot3D or ListStreamPlot3D to visualize the same 3D vector field based data:

Use SliceVectorPlot3D to visualize a 3D vector field data along a surface:

Use ListSliceVectorPlot3D to visualize the same 3D vector field data based on data:

StreamDensityPlot samples more points where it needs to:

Scalar fields can be plotted by themselves with ListDensityPlot:

Use ListLineIntegralConvolutionPlot to plot the line integral convolution of vector field data:

Use ComplexVectorPlot or ComplexStreamPlot to visualize a complex function of a complex variable as a vector field or with streamlines:

Use GeoVectorPlot to plot vectors on a map:

Use GeoStreamPlot to plot streamlines instead of vectors:

Neat Examples  (3)

Plot streamlines with the divergence as the background density:

Plot streamlines with the absolute value of the vorticity as the background density:

Constrain the stream plot to a variety of regions:

See Also

StreamPlot  StreamPlot3D  VectorPlot  ListStreamPlot  LineIntegralConvolutionPlot  DensityPlot  ParametricPlot  ContourPlot  Plot3D  VectorPlot3D  SliceVectorPlot3D  DensityPlot3D  SliceDensityPlot3D  GeoStreamPlot

Related Guides

    ▪
  • Vector Visualization

History

Introduced in 2008 (7.0) | Updated in 2012 (9.0) ▪ 2014 (10.0) ▪ 2018 (11.3) ▪ 2020 (12.2) ▪ 2022 (13.1)

Wolfram Research (2008), StreamDensityPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/StreamDensityPlot.html (updated 2022).

Text

Wolfram Research (2008), StreamDensityPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/StreamDensityPlot.html (updated 2022).

CMS

Wolfram Language. 2008. "StreamDensityPlot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/StreamDensityPlot.html.

APA

Wolfram Language. (2008). StreamDensityPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/StreamDensityPlot.html

BibTeX

@misc{reference.wolfram_2025_streamdensityplot, author="Wolfram Research", title="{StreamDensityPlot}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/StreamDensityPlot.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_streamdensityplot, organization={Wolfram Research}, title={StreamDensityPlot}, year={2022}, url={https://reference.wolfram.com/language/ref/StreamDensityPlot.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English