Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
VectorDisplacementPlot
  • See Also
    • VectorDisplacementPlot3D
    • VectorPlot
    • StreamPlot
    • VectorPlot3D
    • VectorDensityPlot
    • StreamPlot3D
    • StreamDensityPlot
  • Related Guides
    • Vector Visualization
    • See Also
      • VectorDisplacementPlot3D
      • VectorPlot
      • StreamPlot
      • VectorPlot3D
      • VectorDensityPlot
      • StreamPlot3D
      • StreamDensityPlot
    • Related Guides
      • Vector Visualization

VectorDisplacementPlot[{vx,vy},{x,xmin,xmax},{y,ymin,ymax}]

generates a displacement plot for the vector field {vx,vy} as a function of x and y.

VectorDisplacementPlot[{vx,vy},{x,y}∈reg]

plots the displacement over the geometric region reg.

VectorDisplacementPlot[{{vx,vy},s},…]

uses the scalar field s to style the displacement.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Sampling  
Presentation  
Options  
AspectRatio  
BoundaryStyle  
ColorFunction  
Show More Show More
ColorFunctionScaling  
Mesh  
MeshFunctions  
MeshStyle  
PlotLegends  
PlotPoints  
PlotRange  
PlotStyle  
RegionBoundaryStyle  
RegionFillingStyle  
RegionFunction  
VectorAspectRatio  
VectorColorFunction  
VectorColorFunctionScaling  
VectorMarkers  
VectorPoints  
VectorRange  
VectorScaling  
VectorSizes  
VectorStyle  
Applications  
Basic Applications  
Visualizing Eigenvalues and Eigenvectors  
Solid Mechanics  
Complex Variables  
Map Projections  
Properties & Relations  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • VectorDisplacementPlot3D
    • VectorPlot
    • StreamPlot
    • VectorPlot3D
    • VectorDensityPlot
    • StreamPlot3D
    • StreamDensityPlot
  • Related Guides
    • Vector Visualization
    • See Also
      • VectorDisplacementPlot3D
      • VectorPlot
      • StreamPlot
      • VectorPlot3D
      • VectorDensityPlot
      • StreamPlot3D
      • StreamDensityPlot
    • Related Guides
      • Vector Visualization

VectorDisplacementPlot

VectorDisplacementPlot[{vx,vy},{x,xmin,xmax},{y,ymin,ymax}]

generates a displacement plot for the vector field {vx,vy} as a function of x and y.

VectorDisplacementPlot[{vx,vy},{x,y}∈reg]

plots the displacement over the geometric region reg.

VectorDisplacementPlot[{{vx,vy},s},…]

uses the scalar field s to style the displacement.

Details and Options

  • VectorDisplacementPlot uses the vector field {vx,vy} to displace the points in a region. By default, the size of the displacement is automatically scaled so that both small and large displacements remain visible. The displaced region is by default colored according to the magnitude of the displacement.
  • VectorDisplacementPlot has the same options as Graphics, with the following additions and changes: [List of all options]
  • AspectRatio Automaticratio of height to width
    BoundaryStyle Automatichow to style the boundary of the displaced region
    ClippingStyleAutomatichow to display arrows outside the vector range
    ColorFunction Automatichow to color the displaced region
    ColorFunctionScaling Truewhether to scale the arguments to ColorFunction
    EvaluationMonitorNoneexpression to evaluate at every function evaluation
    FrameTruewhether to draw a frame around the plot
    FrameTicksAutomaticframe tick marks
    Mesh Nonehow many mesh lines in each direction to draw
    MeshFunctions {#1&,#2&}how to determine the placement of mesh lines
    MeshStyle Automaticthe style for mesh lines
    MethodAutomaticmethods to use for the plot
    PerformanceGoal$PerformanceGoalaspects of performance to try to optimize
    PlotLegends Nonelegends to include
    PlotRange {Full,Full}range of x, y values to include
    PlotRangePaddingAutomatichow much to pad the range of values
    PlotStyle Automatichow to style the deformed region
    PlotTheme$PlotThemeoverall theme for the plot
    RegionBoundaryStyle Automatichow to style plot region boundaries
    RegionFillingStyle Automatichow to style plot region interiors
    RegionFunction (True&)determine what region to include
    VectorAspectRatio Automaticwidth to length ratio for arrows
    VectorColorFunction Automatichow to color arrows
    VectorColorFunctionScaling Truewhether to scale the argument to VectorColorFunction
    VectorMarkers Automaticshape to use for arrows
    VectorPoints Nonethe number or placement of arrows
    VectorRange Automaticrange of vector lengths to show
    VectorScaling Nonehow to scale the sizes of arrows
    VectorSizes Automaticsizes of displayed arrows
    VectorStyle Nonehow to style arrows
    WorkingPrecisionMachinePrecisionprecision to use in internal computations
  • By default, the displacement plot shows a representation of the original region and the displaced region.
  • RegionBoundaryStyle and RegionFillingStyle can be used to change the style of the original region.
  • Additional settings for VectorPoints to show displacement arrows include:
  • Automaticautomatically chosen points
    "Boundary"points along the boundary of reg
  • By default, displacement arrows connect locations in the original region with the corresponding displaced locations.
  • VectorSizesFull shows the full displacement rather than a scaled representation.
  • List of all options

    • AlignmentPointCenterthe default point in the graphic to align with
      AspectRatioAutomaticratio of height to width
      AxesFalsewhether to draw axes
      AxesLabelNoneaxes labels
      AxesOriginAutomaticwhere axes should cross
      AxesStyle{}style specifications for the axes
      BackgroundNonebackground color for the plot
      BaselinePositionAutomatichow to align with a surrounding text baseline
      BaseStyle{}base style specifications for the graphic
      BoundaryStyleAutomatichow to style the boundary of the displaced region
      ClippingStyleAutomatichow to display arrows outside the vector range
      ColorFunctionAutomatichow to color the displaced region
      ColorFunctionScalingTruewhether to scale the arguments to ColorFunction
      ContentSelectableAutomaticwhether to allow contents to be selected
      CoordinatesToolOptionsAutomaticdetailed behavior of the coordinates tool
      Epilog{}primitives rendered after the main plot
      EvaluationMonitorNoneexpression to evaluate at every function evaluation
      FormatTypeTraditionalFormthe default format type for text
      FrameTruewhether to draw a frame around the plot
      FrameLabelNoneframe labels
      FrameStyle{}style specifications for the frame
      FrameTicksAutomaticframe tick marks
      FrameTicksStyle{}style specifications for frame ticks
      GridLinesNonegrid lines to draw
      GridLinesStyle{}style specifications for grid lines
      ImageMargins0.the margins to leave around the graphic
      ImagePaddingAllwhat extra padding to allow for labels etc.
      ImageSizeAutomaticthe absolute size at which to render the graphic
      LabelStyle{}style specifications for labels
      MeshNonehow many mesh lines in each direction to draw
      MeshFunctions{#1&,#2&}how to determine the placement of mesh lines
      MeshStyleAutomaticthe style for mesh lines
      MethodAutomaticmethods to use for the plot
      PerformanceGoal$PerformanceGoalaspects of performance to try to optimize
      PlotLabelNonean overall label for the plot
      PlotLegendsNonelegends to include
      PlotRange{Full,Full}range of x, y values to include
      PlotRangeClippingFalsewhether to clip at the plot range
      PlotRangePaddingAutomatichow much to pad the range of values
      PlotRegionAutomaticthe final display region to be filled
      PlotStyleAutomatichow to style the deformed region
      PlotTheme$PlotThemeoverall theme for the plot
      PreserveImageOptionsAutomaticwhether to preserve image options when displaying new versions of the same graphic
      Prolog{}primitives rendered before the main plot
      RegionBoundaryStyleAutomatichow to style plot region boundaries
      RegionFillingStyleAutomatichow to style plot region interiors
      RegionFunction(True&)determine what region to include
      RotateLabelTruewhether to rotate y labels on the frame
      TicksAutomaticaxes ticks
      TicksStyle{}style specifications for axes ticks
      VectorAspectRatioAutomaticwidth to length ratio for arrows
      VectorColorFunctionAutomatichow to color arrows
      VectorColorFunctionScalingTruewhether to scale the argument to VectorColorFunction
      VectorMarkersAutomaticshape to use for arrows
      VectorPointsNonethe number or placement of arrows
      VectorRangeAutomaticrange of vector lengths to show
      VectorScalingNonehow to scale the sizes of arrows
      VectorSizesAutomaticsizes of displayed arrows
      VectorStyleNonehow to style arrows
      WorkingPrecisionMachinePrecisionprecision to use in internal computations

Examples

open all close all

Basic Examples  (5)

Plot a reference region and the corresponding (scaled) deformed region for a specified displacement field:

Include a legend for the norms of the displacements:

Show a sampling of displacement vectors that extend from points in the reference region to corresponding points in the deformed region:

Use a scalar field other than the norm of the displacement field to color the deformed region:

Plot the displacement for a bracket anchored along the bottom that is being pulled laterally:

Color the displacement according to the shear stress for the bracket:

Scope  (19)

Sampling  (12)

Visualize a scaled displacement field by comparing a reference and a deformed region:

Vectors are drawn from points in the reference region to corresponding points in the (scaled) deformed region:

Restrict vectors to points on the boundary:

Specify other vectors:

Displacements can be drawn to scale:

Use the displacement field over a specified region:

The domain may be specified by a region:

The domain may be a curve:

The domain may be an ImplicitRegion:

The domain may be a ParametricRegion:

The domain may be a MeshRegion:

The domain may be a BoundaryMeshRegion:

Presentation  (7)

Specify the ColorFunction for the deformed region:

Specify the VectorColorFunction independently of the ColorFunction:

Use a single color for the arrows:

Include a legend for the norms of the displacements:

Include a legend for the optional scalar field:

Include a Mesh:

Draw displacements to scale:

Options  (64)

AspectRatio  (2)

By default, the aspect ratio is Automatic:

Set the aspect ratio:

BoundaryStyle  (3)

By default, the boundary style matches the interior colors in the deformed region:

Specify the BoundaryStyle:

BoundaryStyle applies to regions cut by RegionFunction:

ColorFunction  (4)

By default, the deformed region is colored by the norm of the field:

Specify a scalar field for the colors:

Use a named color gradient:

Specify a custom ColorFunction:

ColorFunctionScaling  (2)

Use the natural range of norm values:

Control the scaling of the individual arguments of the ColorFunction:

Mesh  (6)

Specify a Mesh to visualize the displacements:

Show the initial and final sampling mesh:

Specify 10 mesh lines in the direction and 5 in the direction:

Use mesh lines at specific values:

Highlight specific mesh lines:

Mesh lines are suppressed in the reference region if the boundary and filling of the reference region are removed:

MeshFunctions  (2)

By default, the mesh lines are in the and directions:

Use circular and radial mesh lines:

MeshStyle  (2)

Style the mesh lines:

Style the mesh lines differently in different directions:

PlotLegends  (3)

Include a legend to show the color range of vector norms:

Include a legend for the optional scalar field:

Control the placement of the legend:

PlotPoints  (1)

Use more points to get smoother regions:

PlotRange  (3)

The full PlotRange is used by default:

Specify an explicit limit that is shared by the and directions:

Specify different plot ranges in the and directions:

PlotStyle  (4)

Remove the filling for the deformed region:

Apply a Texture to the deformed region:

Use PatternFilling to style the deformed region:

ColorFunction has precedence over PlotStyle:

RegionBoundaryStyle  (2)

Specify the boundary color of the reference region:

Remove the boundary of the reference region:

RegionFillingStyle  (2)

Specify the filling of the reference region:

Remove the filling for the reference region:

RegionFunction  (1)

Use a RegionFunction to specify the reference region:

VectorAspectRatio  (2)

The default aspect ratio for a vector marker is 1/4:

Specify the relative width of a vector marker:

VectorColorFunction  (3)

By default, if VectorColorFunction is Automatic, then the VectorColorFunction matches the ColorFunction:

Specify a VectorColorFunction that is different from the ColorFunction:

Use no VectorColorFunction:

VectorColorFunctionScaling  (1)

Use the natural range of norm values for vector colors:

VectorMarkers  (3)

By default, vectors are drawn from points in the reference region to corresponding points in the deformed region:

Center the markers at the sampled points:

Use a named appearance to draw the vectors:

VectorPoints  (9)

No vectors are shown by default:

Show vectors sampled from the entire original region:

Sample vectors from the boundary of the region:

Use symbolic names to specify the density of vectors:

Use symbolic names to specify the arrangement of vectors:

Specify the number of vectors in the and directions:

Specify a different number of vectors in the and directions:

Give specific locations for vectors:

Along a curve, vectors are equally spaced by default:

VectorRange  (2)

Specify the range of vector norms:

Style the clipped vectors:

VectorScaling  (2)

By default, vectors extend from points in the reference region to corresponding points in the deformed region:

Set all vectors to have the same size:

VectorSizes  (4)

By default, vectors extend from points in the reference region to corresponding points in the deformed region:

Specify the range of arrow lengths:

Suppress scaling of the displacement vectors so that a rotation of 45° looks appropriate:

Suppress scaling of the displacement vectors even if no vectors are displayed:

VectorStyle  (1)

VectorColorFunction has precedence over VectorStyle:

Applications  (24)

Basic Applications  (16)

A constant displacement field moves each point in the reference region by the same amount:

Note that the displacements are automatically scaled so that very small and very large displacements are both visible:

Use VectorSizesFull to display the actual sizes of displacements:

Color is used to indicate the magnitude of the displacements:

Color the region by a different scalar function:

Use arrows to indicate initial and final locations for a sample points:

Visualize a dilation in the direction:

Visualize a contraction in the direction:

Visualize a dilation in the direction and a contraction in the direction:

Visualize a shear in the direction:

Visualize a shear in the direction:

Visualize a combined shear in the and directions:

Visualize a rotation about the origin:

Combine a rotation, a shear and a dilation:

Visualize a rotation for points near the origin:

Visualize a shear for points near the origin:

Visualizing Eigenvalues and Eigenvectors  (1)

Define a 2×2 matrix:

Compute its eigenvalues and eigenvectors. Eigenvectors and eigenvalues solve the eigenvalue problem , , which can be interpreted here as finding directions that are not rotated by the matrix under multiplication:

The unit disk is stretched by a factor of 3 in the direction and a factor of 2 in the direction:

The original disk has area :

The area of the interior of the resulting ellipse is the product of the eigenvalues times the original area:

Note that multiplication by rotates all vectors except those in the eigenvector directions:

Define a matrix with one positive and one negative eigenvalue:

Use arrows to visualize how the region turns inside out in the direction because of the negative eigenvalue:

Define a matrix with a zero eigenvalue:

Observe that the original disk is stretched by a factor of 5 in the direction, but completely collapsed in the direction:

Define a matrix with a repeated real eigenvalue:

Observe that the vectors are rotated unless they point in the direction:

Define a matrix with complex eigenvalues:

The real part of the eigenvalues causes a uniform dilation and the imaginary part causes every vector to rotate:

Solid Mechanics  (5)

Consider a linearly elastic bar of length and height subjected to a moment of magnitude at both ends:

Specify Young's modulus and Poisson's ratio:

Specify the magnitude of the applied moment:

The resulting displacement vector is:

Visualize the deformed bar:

The only nontrivial stress is the normal stress in the direction:

Color the deformed bar by :

An elastica is a thin, elastic rod that bends without stretching. Consider an initially straight, vertical elastica that is clamped at the bottom end at and loaded with a weight at the top end that is sufficiently large to make the elastica parallel to the ground at the loaded end. Jacob Bernoulli famously found that the arc length is given by:

The total length of the elastica is:

Similarly, the height of a point on the deformed elastica is given by:

In terms of the parameter , the resulting displacement field is:

Create a ParametricRegion for the undeformed elastica:

Visualize the deformed elastica with the weight attached:

Consider an infinite, linearly elastic, thin plate with a hole of radius at the origin with a uniform tensile load in the horizontal direction:

Specify Young's modulus and Poisson's ratio :

Specify the magnitude of the applied tensile load:

Compute the horizontal () and vertical () displacements assuming a state of plane stress:

Compute the hoop stress:

Plot the deformed solid region and color it by the dimensionless hoop stress. Note the stress concentration at the top and bottom of the hole:

The stress concentration factor is 3, regardless of the magnitude of the applied load:

Define an L-shaped region that is fixed at the bottom and has a uniform tensile load applied on the top-right edge:

Specify the governing equations for plane strain:

Specify the boundary conditions on the different edges of the region:

Solve the governing equations:

Plot the deformed region and note that the displacements are amplified to make them more visible:

Color the region by different stress components:

Compute the von Mises stress:

Color the region with the von Mises stress:

This example considers a sequence of deformations that correspond to an increasing load.

Consider a thin quarter-arch that is fixed at (red) with a variable vertical traction applied at (blue):

Assume a state of plane stress and define the displacement variables and the material parameters:

Specify a maximum load:

Compute the displacement and shear strain for the maximum load:

Compute the minimum and maximum values of the shear strain:

Create a color function for the strains that applies for all load values from zero load up to the maximum:

Create a legend that applies for all load values:

Compute and visualize the deformations for a sequence of load values, using the shear strain to color the deformed arch:

Click the following image to cycle through the loads. Note that the displacements are large because the arch is thin and that the colors are consistent across all of the load values:

Complex Variables  (1)

Define a complex function :

Compute the displacement field:

Visualize the complex transformation and note that lines are mapped to circles:

Use arrows to illustrate how points on the concentric circles TemplateBox[{z}, Abs]=1/2 and TemplateBox[{z}, Abs]=2 are transformed under :

Map Projections  (1)

Generate a number of disks and form their union:

Superimpose the disks on a map of the world with an equirectangular projection:

Specify the displacement from the equirectangular projection to a Mercator projection:

Show the deformed disks on a map with the Mercator projection:

Properties & Relations  (9)

Use ListVectorDisplacementPlot to visualize a deformation based on displacement field data:

Use VectorDisplacementPlot3D to visualize the deformation of a 3D region associated with a displacement vector field:

Use ListVectorDisplacementPlot3D to visualize the same deformation based on data:

Use VectorPlot to directly plot a vector field:

Use StreamPlot to plot with streamlines instead of vectors:

Use ListVectorPlot or ListStreamPlot for plotting data:

Use VectorDensityPlot to add a density plot of the scalar field:

Use StreamDensityPlot to plot streamlines instead of vectors:

Use ListVectorDensityPlot or ListStreamDensityPlot for plotting data:

Use LineIntegralConvolutionPlot to plot the line integral convolution of a vector field:

Use VectorPlot3D and StreamPlot3D to visualize 3D vector fields:

Use ListVectorPlot3D or ListStreamPlot3D to plot with data:

Plot vectors on surfaces with SliceVectorPlot3D:

Use ListSliceVectorPlot3D to plot with data:

Use ComplexVectorPlot or ComplexStreamPlot to visualize a complex function of a complex variable as a vector field or with streamlines:

Use GeoVectorPlot to plot vectors on a map:

Use GeoStreamPlot to plot streamlines instead of vectors:

See Also

VectorDisplacementPlot3D  VectorPlot  StreamPlot  VectorPlot3D  VectorDensityPlot  StreamPlot3D  StreamDensityPlot

Related Guides

    ▪
  • Vector Visualization

History

Introduced in 2021 (13.0)

Wolfram Research (2021), VectorDisplacementPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/VectorDisplacementPlot.html.

Text

Wolfram Research (2021), VectorDisplacementPlot, Wolfram Language function, https://reference.wolfram.com/language/ref/VectorDisplacementPlot.html.

CMS

Wolfram Language. 2021. "VectorDisplacementPlot." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/VectorDisplacementPlot.html.

APA

Wolfram Language. (2021). VectorDisplacementPlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/VectorDisplacementPlot.html

BibTeX

@misc{reference.wolfram_2025_vectordisplacementplot, author="Wolfram Research", title="{VectorDisplacementPlot}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/VectorDisplacementPlot.html}", note=[Accessed: 01-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_vectordisplacementplot, organization={Wolfram Research}, title={VectorDisplacementPlot}, year={2021}, url={https://reference.wolfram.com/language/ref/VectorDisplacementPlot.html}, note=[Accessed: 01-December-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English